

September 2018 | Response to Comments

CHINO HIGH SCHOOL RECONSTRUCTION

Chino Valley Unified School District

Prepared for:

Chino Valley Unified School District Contact: Greg Stachura, Assistant Superintendent Facilities, Planning, and Operations 5130 Riverside Drive Chino, California 91710 909.628.1201

Prepared by:

PlaceWorks Contact: Alice Houseworth, AICP, LEED AP, Senior Associate 3 MacArthur Place, Suite 1100 Santa Ana, California 92707 714.966.9220

Table of Contents

Sectio	0 n		Page
1.	INTR	RODUCTION	1
	1.1	INTRODUCTION	1
	1.2	DOCUMENT FORMAT	1
	1.3	CEQA REQUIREMENTS REGARDING COMMENTS AND RESPONSES	2
2.	RES	PONSE TO COMMENTS	3

Attachments

Attachment A.	Emergency Helicopter Landing Area
Attachment B.	Traffic Calculation Worksheets

Attachment C. Traffic Signal Warrant Analysis Worksheets

Table of Contents

This page intentionally left blank.

1. Introduction

1.1 INTRODUCTION

This document includes a compilation of the public comments received on the Chino High School Reconstruction Mitigated Negative Declaration and supporting Initial Study (collectively, "MND"; State Clearinghouse No. 2018081057) and Chino Valley Unified School District's (District) responses to the comments.

Under the California Environmental Quality Act (CEQA), a lead agency has no affirmative duty to prepare formal responses to comments on an MND. The lead agency, however, should have adequate information on the record explaining why the comments do not affect the conclusion of the MND that there are no potentially significant environmental effects. In the spirit of public disclosure and engagement, the District—as the lead agency of the proposed project—has responded to all written comments submitted during the 30-day MND public review period, which began August 22, 2018 and closed on September 21, 2018.

1.2 DOCUMENT FORMAT

This document is organized as follows:

Section 1, Introduction. This section describes CEQA requirements and content of this document.

Section 2, *Response to Comments.* This section provides a list of agencies and interested persons commenting on the MND, copies of comment letters received during the public review period, and individual responses to written comments.

1. Introduction

1.3 CEQA REQUIREMENTS REGARDING COMMENTS AND RESPONSES

CEQA Guidelines Section 15204 (b) outlines parameters for submitting comments on negative declarations, and reminds persons and public agencies that the focus of review and comment of MNDs should be:

on the proposed findings that the project will not have a significant effect on the environment. If the commenter believes that the project may have a significant effect, it should:

(1) Identify the specific effect,

(2) Explain why they believe the effect would occur, and

(3) Explain why they believe the effect would be significant.

Section 15204 (a) explains that:

Comments are most helpful when they suggest additional specific mitigation measures that would provide better ways to avoid or mitigate the significant environmental effects. At the same time, reviewers should be aware that the adequacy...is determined in terms of what is reasonably feasible. ...CEQA does not require a lead agency to conduct every test or perform all research, study, and experimentation recommended or demanded by commenters. When responding to comments, lead agencies need only respond to significant environmental issues and do not need to provide all information requested by reviewers, as long as a good faith effort at full disclosure is made.

CEQA Guidelines Section 15204 (c) further advises:

Reviewers should explain the basis for their comments, and should submit data or references offering facts, reasonable assumptions based on facts, or expert opinion supported by facts in support of the comments. Pursuant to Section 15064, an effect shall not be considered significant in the absence of substantial evidence.

Section 15204 (d) states, "Each responsible agency and trustee agency shall focus its comments on environmental information germane to that agency's statutory responsibility." Section 15204 (e) states, "This section shall not be used to restrict the ability of reviewers to comment on the general adequacy of a document or of the lead agency to reject comments not focused as recommended by this section."

2. Response to Comments

This section provides all written comments received on the circulated MND and the District's response to each comment.

To facilitate review of the responses, each comment letter has been reproduced and assigned a number. Individual comments have been numbered for each letter, and the letter is followed by responses with references to the corresponding comment number.

Number Reference	Commenting Person/Agency	Date of Comment	Page No.
А	Gabrieleno Band of Mission Indians-Kizh Nation	09/19/18	5
В	Prime Healthcare	09/21/18	9
С	City of Chino	09/21/18	13

This page intentionally left blank.

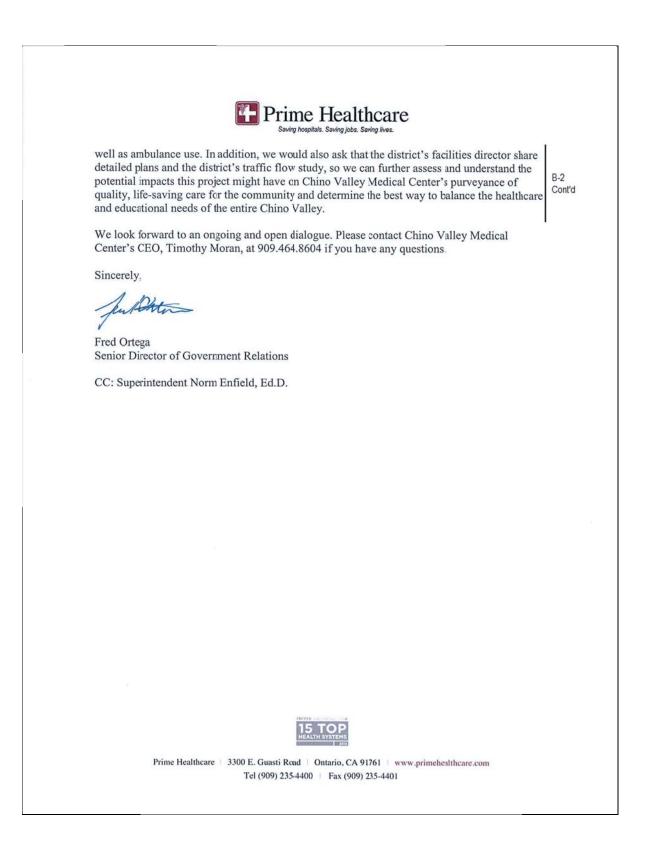
LETTER A - Gabrieleno Band of Mission Indians-Kizh Nation. (1 page)

GABRIELENO BAND OF MISSION INDIANS - KIZHNATION Historically known as The San Gabriel Band of Mission Indians recognized by the State of California as the aboriginal tribe of the Los Angeles basin Notice of Intent to Adopt An Initial Study/ Mitigated Negative Declaration September 19, 2018 Greg Stachura City of Chino 5130 Riverside Drive, Chino, CA 91710 Good afternoon Greg Stachura, We have received your Notice of Intent to adopt a Negative Declaration for this project the Chino High School Reconstruction in the location of the county of San Bernardino. Our Tribal Government would like to be consulted A-1 if any ground disturbance will be conducted for this project. Sincerely Lexie Gabrieleno Band of Mission Indians/Kizh Nation (1844) 390-0787 Office

This page intentionally left blank.

A. Response to Comments from Gabrieleno Band of Mission Indians-Kizh Nation., dated September 19, 2018.

A-1 As discussed in the Initial Study, Chapter 5, Section 5.17, pages 135 and 136, to date the District has not received any official AB 52 tribal requests to be notified about projects. However, the District sent notification letters to six tribes. Contact information was provided by the Native American Heritage Commission (see Appendix B of this Initial Study). The tribes were notified on January 12, 2018.


Mr. Andrew Salas, Chairman of Gabrieleno Band of Mission Indians – Kizh Nation, responded on January 17, 2018. The District initiated consultation on January 23, 2018, by contacting the tribe to arrange a meeting. No response was forthcoming. There is no substantial evidence that tribal cultural resources are present on the existing school campus. Additionally, the entire campus was heavily disturbed between 1950 and 1992 during various construction projects.

The Chino Valley Unified School District Board of Education will consider all comments prior to making a decision on the project.

This page intentionally left blank.

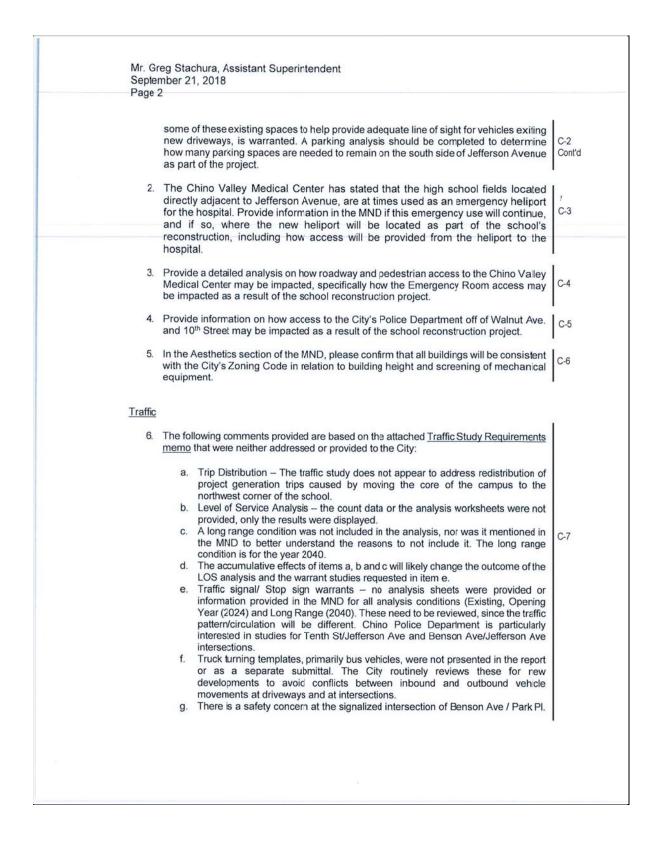
LETTER B – Prime Healthcare (2 pages)

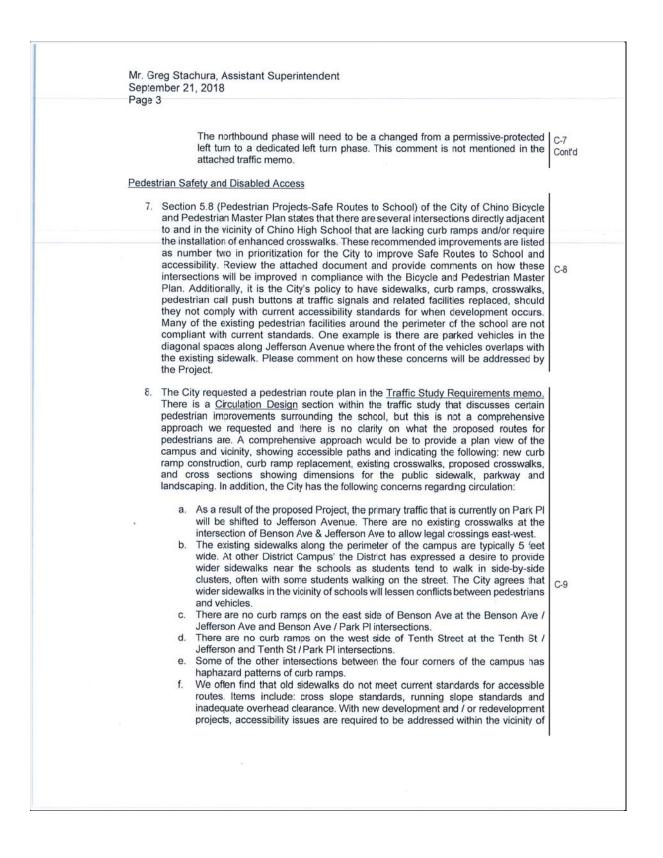
S	September 21, 2018
E 5	Chino Valley Unified School District Board of Education 5130 Riverside Drive Chino, CA 91710
	Re: <u>Proposed Adoption of a Mitigated Negative Declaration on the Chino High School</u> Reconstruction Project
E	Esteemed Members of the Board,
F M H F r s c c e s S F	am writing on behalf of Prime Healthcare, an award-winning national hospital system and barent company of Chino Valley Medical Center, in regards to the Board's intent to adopt a Mitigated Negative Declaration on the proposed Chino High School Reconstruction Project, located a half mile from the Chino Valley Medical Center campus. Prime Healthcare and Chino Valley Medical Center understand and support the urgent need to reconstruct the academic core of the Chino High School campus, and the invaluable contribution such a project would make toward improving and expanding educational opportunities for our community's youth. Prime Healthcare and its founder, Dr. Prem Reddy, has always supported educational programs and academic endeavors, donating millions of dollars toward college scholarships and facility construction from the high school to college level, including at Chino High School.
A A A A A A	That said, we would like to raise some concerns about the impact that this project might have on Chino Valley Medical Center and its ability to continue to provide timely, vital and award- winning healthcare to the people of Chino and surrounding communities. Among our primary concerns are the impact that the proposed project would have through increased traffic flow along Jefferson Avenue and in front of our Emergency Department, particularly during construction and after completion during peak times while school is in session; the potential reduction in Chino Valley employee and patient parking along Jefferson Avenue; and the potential elimination of our hospital's ability to use the existing sports fields for nelicopter evacuations.
	Therefore, we respectfully ask to confer with school district officials to explore ways to mitigate hese concerns, including exploring the possibility of utilizing district property for parking as

B. Response to Comments from Fred Ortega, Prime Healthcare, dated September 21, 2018

- B-1 Comment acknowledged.
- B-2 Traffic impacts are fully analyzed in a Traffic Impact Analysis (Appendix F of the Initial Study) and summarized in the Initial Study, Chapter 5, Section 5.16. As shown on Table 23, page 129, none of the surrounding intersections would be significantly impacted by the reconstruction of Chino High School. The student parking lot would stay in the same location and would not affect traffic flow on surrounding streets. The new on-campus staff parking lot along Jefferson Avenue would have 168 spaces and may reduce the number of cars parked in the angled spaces. Based on comments from the City, most of the angled parking spaces on Jefferson Avenue would remain.

Large construction equipment and vehicles would be located on the campus and would not be traveling the surrounding streets.


The District discussed, via telephone, with hospital administrators at the Chino Valley Medical Center the helicopter landing areas. Although there is no written agreement or requirement, the hospital and school district have a mutual verbal agreement that when an emergency medical helicopter needs to land they can use the athletic fields at Chino High School. At that time either the Chino Police Department or Fire Department opens the school gate along Jefferson Avenue. Patients are then transported to/from the helicopter from/to the hospital by ambulance. The distance from the current landing areas to the Jefferson Avenue gate is about the same and should not significantly increase travel time to/from the emergency room.


No changes to the existing procedures would occur, and the new locations would not significantly impact the route, distance, or time for transport of patients. An aerial photograph with the existing and future locations is attached as Appendix A. The District is available to further discuss the proposed project.

This page intentionally left blank.

LETTER C – City of Chino (15 pages)

EUNICE M. ULLOA	ALL OF COLOR	EARL C. ELROD
Mayor		GARY GEORGE PAUL A. RODRIGUEZ, Ed.D. Council Members
TOM HAUGHEY Mayor Pro Tem	A CONTRACTOR OF	MATTHEW C. BALLANTYN
	CITY of CHINO	City Manager
September 21	, 2018	
Chino Valley I		
RE: Respon Chino H	e to Notice of Intent to adopt a Mitigated Negative gh School Reconstruction project	Declaration (MND)for the
Dear Mr. Stac	hura:	
environmenta The City has identified a n accessibility ii of Chino Higl included in ti requested stud any of the doo and Prelimina	r providing the City of Chino an opportunity to co I issues related to the proposed Chino High Schoo reviewed the project's draft Mitigated Negative Dec umber of potential concerns primarily related to of mpacts the project would place on adjacent properti n School. As a result, the items identified below s he revised MND being prepared for the project. lies and reports to address many of these concerns, bu uments. See attached Traffic Study Requirements m by Review Comments dated December 6, 2017. The re driveways to affect safety and traffic flow concerns to the provide the set of the set of the set of the set of the the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of	claration (MND) and has fsite traffic, parking, and les and within the vicinity should be analyzed and The City has previously ut to date has not received emo dated April 11, 2018 City appreciates that our
The following reconstruction	comments identify potential concerns the City project:	has with the proposed
General		
propos previo staff th the pro space busine	38 angled parking spaces that currently exist alon teed to be removed as part of the project due to caus discussions with the project's development team hat not all of the angled parking spaces would need oject. This is an important issue because some of the s are currently being utilized by the Chino Valley M sees to the north of the high school. With this in mind b as much parking in the area as possible. It is also	oncerns with visibility. In n, it was indicated to City to be removed as part of e existing angled parking Medical Center and other I, it is the City's preference
23	13220 Central Avenue, Chino, Califernia 91710 Mailing Address: P.O. Box 667, Chino, California 91708 (909) 334-3250 • (909) 334-3720 Fax	I 0667

Mr. Greg Stachu September 21, 2 Page 4	ura, Assistant Superintendent 2018	
th id cr W <u>Other Items</u> 9. Other teo	he Project. After identifying pedestrian routes in the vicinity of the school and dentifying crosswalks and proposed sidewalks, any sidewalks that are not ADA ompliant should be addressed and corrections should be made where varranted.	C-9 Conťd
a. P E ww or g b. C ar e c. A in st d. Th re e. A ln th m th g g. D rig Thank you again School Reconstru your list of contar the proposed pro	 Comments were not addressed. This report has not been provided to the City. The invironmental Analysis in the MND states that LID stormwater management fould be incorporated into the project design. However, providing LID design is inly one component for meeting stormwater quality. A Preliminary WQMP is equired to assess the percentage of the campus that would be disturbed and pon this evaluation, a determination will be made regarding the extent of the roperty would be subject to stormwater treatment and the type of treatment. Conceptual Utility plan – the City needs to understand the location of existing nd proposed utilities to serve the Project needs to be evaluated. Hydrology report was not submitted that would entail any drainage mprovements requirements, both onsite and offsite. Again, the adequacy of the torm drain system in the vicinity of the school needs to be evaluated. Here is no mentioning of any undergrounding of overhead utilities that would be aquired per City Municical Code, triggered by the improvements of this project. revised site plan was submitted by the developer's architect- WLC Architects to, on July 23, 2018. The City reviewed the revised site plan and determined hat the proposed driveway locations requested in the <u>TrafficStudy Requirements temo</u> were addressed, However, there are still some missing information oncerning the following: Accessibility improvements within the public ROW. Improvements shculd include, but no: limited to, sidewalk improvements, curb ramps and crosswalks. Refer to comment #8, above. There is no information on the lane configuration for Jefferson Avenue, specifically the intended removal of the existing diagonal parking on the south side and the addition of a two-way left turn lane in the center of the road. This information is critical because there will need to be coordination between Chino High School and Chino Medical Center across the street; amongst other facilities tha	C-10

	Mr. Greg Stachura, Assistant Superintendent September 21, 2018 Page 5	
K	Sincerety	
	Warren Morelion, AICP City Planner cc. Development Services Department	
	Public Works Department Attachments: 1 Pedestrian Safe Routes to School Information 2 Traffic Study Requirements memo dated April 11, 2018 08 3 Preliminary Review Comments dated December 6, 2017	

5.7 Pedestrian Recommendations - Safe Routes to School

Pedestrian Infrastructure Near Schools

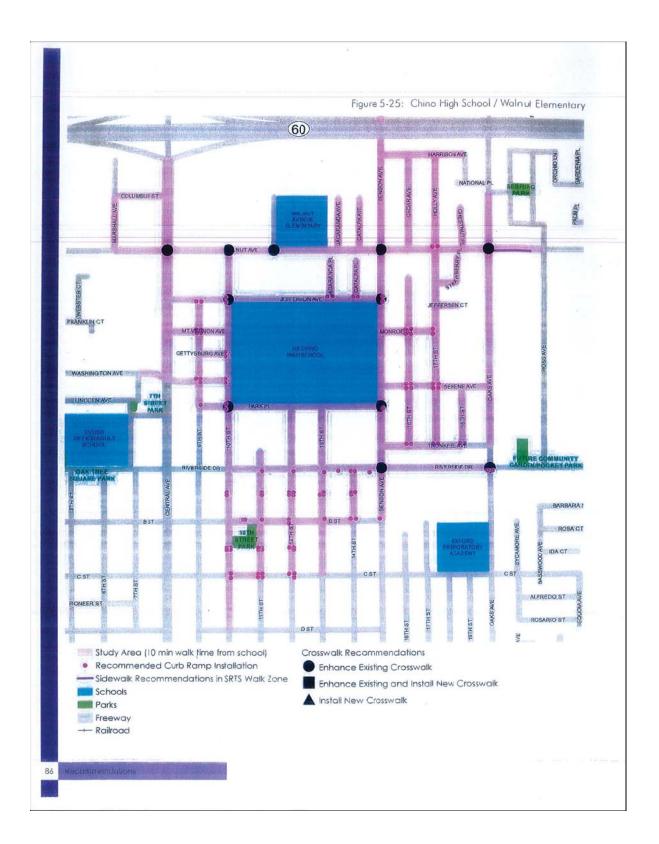
Defining Sale Routes to School Zones and Generating Bicycle and Pedestrian Projects

Safer routes to school is the primary organizing principle for the pedestrian elements of this plan. A GIS-based methodology was devised to create Safe Routes to School (SRTS) Zones, areas around schools where walking and biking improvements would be prioritized. In the case of pedestrian improvements, these SRTS Zones were the primary method for prioritizing pedestrian improvements.

In the case of bicycle improvements, SRTS Zones were used both to ensure that recommendations of the highest level (lowest stress) were made within school zones, and as a determining factor where right-of-way constraints made the recommendation of dual facilities (on-street and off-street) infeasible. Within SRTS Zones, in cases of insufficient right-of-way, separated bikeways or urban trails were prioritized. Beyond SRTS Zones, in cases of insufficient right-of-way, bicycle lanes were prioritized. Further information on the SRTS Zone methodology follows. Each phase is accompanied by a sample map graphic illustrating how the walkshed changed with each analysis refinement described in the text.

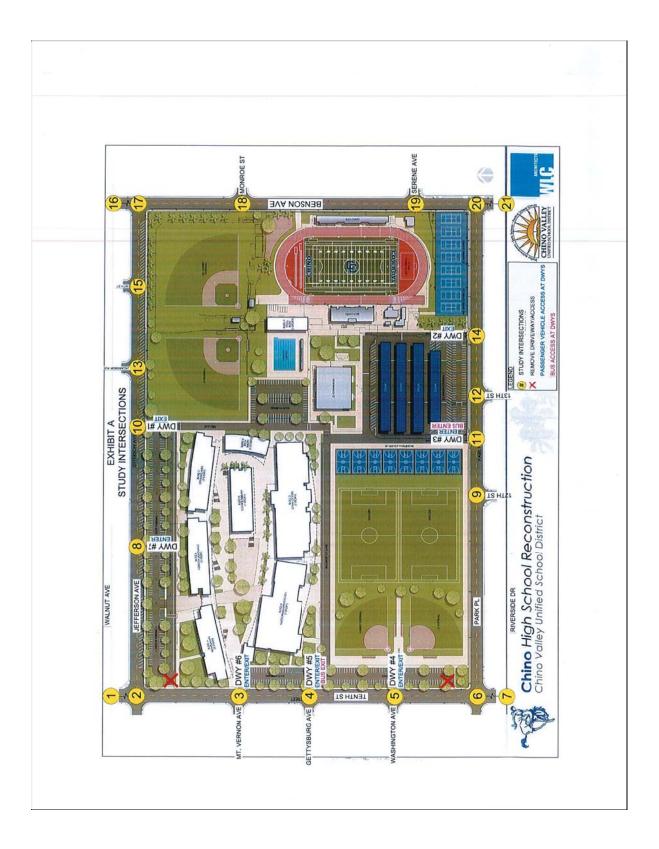
Radial Buffer

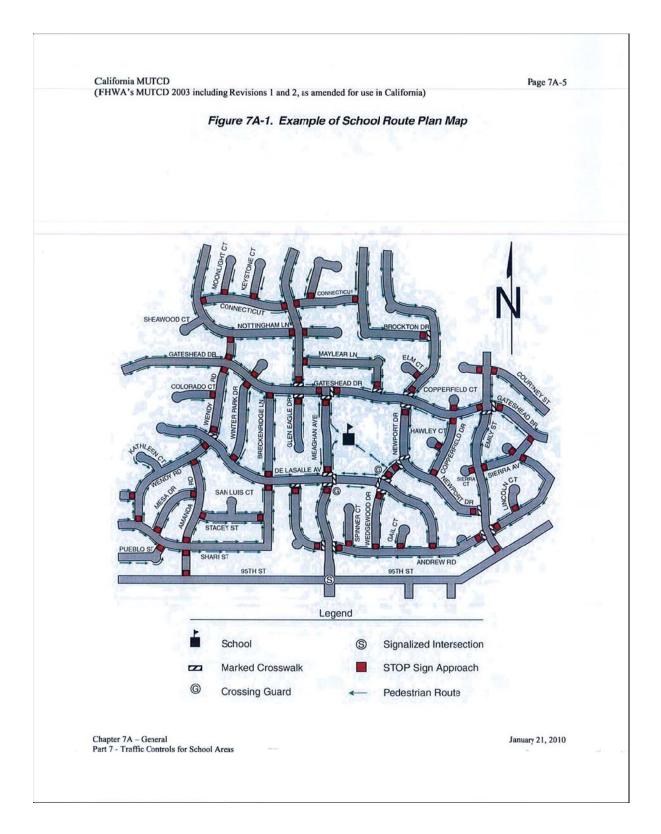
Traditionally, bicycle and pedestrian access was determined by creating a radial buffer, based on a 10 minute or half mile walk time, around a given destination. While this method offered an idea of the general area where walking and biking connections could be made, it did so without regord for actual strees or any multi-use paths available for walking and biking.


Network-based Methodology

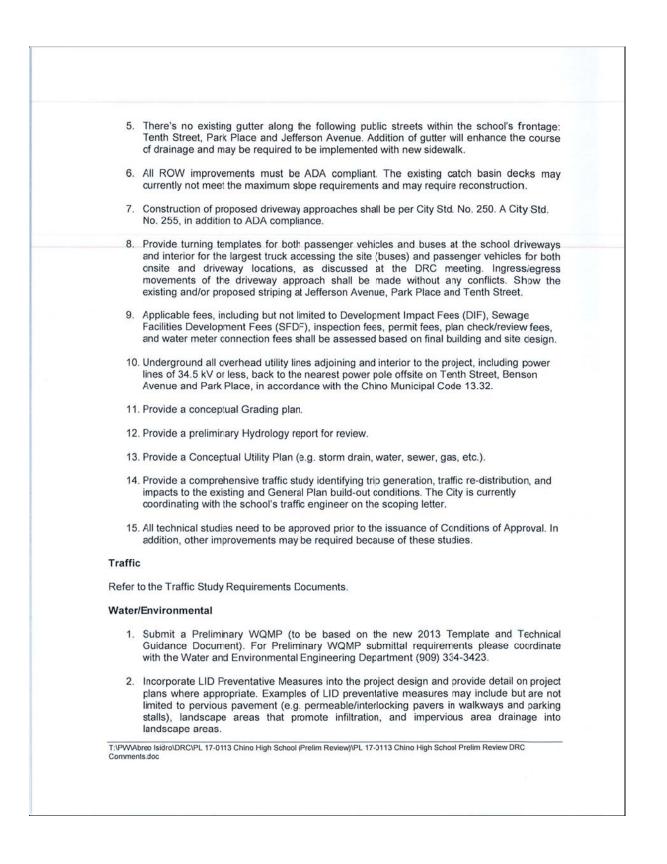
To address the inability of the buffering method alone to account for all existing roadways and multi-use paths, a GIS-based nelwork analysis was devised. This method is similar to the previous method in that it starts from a given point and extends outward, for either 10 minute or a half mile times, to create a walkable or bikeable zone (walkshed or bikeshed, respectively). However, it differs in that it does not simply expand radially, but actually follows the existing streets and multi-use paths. This method is valuable because it provides a more realistic picture of the area's existing walkability and bikeability, but still fails to address the potential walkability and bikeability because it often does not catch small but important gap connections that could be made. It also fails to account for the potential expansion of networks provided by multi-use path connections that overcome significant barriers like open space and freeway and rail crossings.

Riverside Drive at Anna Borba Fundamental School Chino, CA


E Q Dedestriere Projecto Cata Davis	Calcal	
5.8 Pedestrian Projects - Safe Routes to	school	
This plan recommended pedestrian projects according to Scfe Routes to School (SRTS) Zones. SRTS Zone projects were, in turn, ranked against one another according to a set of criteria. The methodology used is similar to those for bicycle facility projects to provide consistency between the two project types. A detailed synopsis of the criteria can be found in Appendix B. The criteria used for	is diffice various improve redevelo the defi projects	he feasibility of constructing all these projects ult and costly, the City could leverage funding sources to complete high priority ements. As the City identifies areas of opment or new development projects arise, ciencies can be conditioned into those s. This enables the mprovements to get built City spending.
prioritizing the pedestrian improvements are:	For pric	pritization purposes, Cal Aero Preserve
 Number of attractions/destinctions Number of schools Walk to Work Population Under 14 Years Old Population Use of Public Transportation to Work Households Without Vehicles 	were ind depend	ny and Chaffey College Campus area duded, however recommendations will be ent on their specific plans moving forward. 20:Prioritized School Zones
Reported Collisions	-	
Population Density	Rank	School Meridian School
Employment Density	1	Anna Borba Fundamental/Adult School
Freeway Crossings	2	Chino High School/Walnut Ave Elementary
Recommendations	3	Ramona Junior High School
To summarize, this plan recommends a total of	3	Kamona Junior nign School
7.5 miles of pedestrian (sidewalk completion) projects, and 526 curb ramp improvements around	4	Oxford Preparatory Academy
schools. Many of the recommendations derived from public input, field investigations and a school	5	Don Antonio Lugo High School
principal survey. The following pages include an overall key map of the SRTS Zones and individual	6	Newman Elementary
blow-ups of each. Project rankings are summarized in the following table with costs in Chapter 7.	7	EJ Marshall Elementary
Crosswalks were recommended to be enhanced	8	Magnolia Junior High School
from Standard striping to Continental or Ladder Crosswalks, porticularly near schools. New	9	Howard Cattle/Rhodes Elementary
crosswalks were also recommended particularly if they meet the necessary warrants for installation.	10	Buena Vista High School
The Safe Routes to School projects may be funded	11	Cal Aero Preserve Academy
hrough a combination of developer fees, Caltrans, Federal and Safe Routes to School-specific funding	12	Alicia Cortez Elementary
treams. As part of these grants, construction funding s available particularly as it related to Safe Routes.	13	Chaffey College Chino Campus
o School. SRTS grants are also one of the primary unding sources for bicycle and pedestrian projects.		
		Chine) Revealed and considering a Master For



CITY C	OF CHINO	PUBLIC WORKS
MEMORA	NDUM	DEPARTMENT
DATE:	April 11, 2018	
TO:	Jim DiCamillo, WLC Architects	
FROM:	DAVID HAMMER, CIVIL ENGINEERING	MANAGER
SUBJECT:	CHINO HIGH SCHOOL RECONS REQUIREMENTS	TRUCTION - TRAFFIC STUDY
Karen Campb Cloke from the	ewed the site plan you provided on October 20, well, both from the Transportation Division of P e Police Department. The following should be i Exhibit A for the study intersections as well as t	ublic Works, and Scott Trosper and Jason ncluded in the project traffic study. Refer to
	Per the discussion at the DRCLevel 1 meetin off Tenth St. closest to the Tenth St & Jeffe close to the intersection and would not be co Refer to Intersection #6 in Exhibit A for the ne	rson Ave intersection. The driveway is too nvenient for the southbound left turn traffic.
b.	Eliminate the driveway off Tenth St. closest t driveway is too close to the intersection an Intersection #4 in Exhibit A for the new drivew	d could create circulation issues. Refer to
c.	Driveway #1 (Int #8) is proposed and intend parking stripes on Jefferson Ave. west and ea distance in accordance with Chino Standard there will also need to be coordination with the mitigate their parking concerns. Note: There available in the City's website. The criteria for year.	st of the driveway to provide adequate sight Drawing # 865. With this parking removal he hospital across the street to resolve and are new City Standards & Specifications
d.	Driveway #2 (Int.#12) is currently an exit onl (Note: Poor drainage with ponded water pose	
e.	Driveway #3 (Int.#9) is currently an entrance only driveway.	only driveway. It shall remain an entrance
f.	Driveway #4 (Int.#4) is currently for exiting o exit. Study queuing of southbound vehicles for conflicts with this driveway.	nly. It is proposed to be both entrance and at the Tenth Street/Park Place intersection
g.	Driveway #5 (Int.#3) is not existing. It is	proposed to be located at the Tenth St.
		100 E * 119225 (\$100-2)


CHINO April 11 Page 2	
	/Gettysburg Ave. intersection. It shall be used for entering and exiting vehicles including exiting buses.
	 <u>Driveway #6 (Int.#2)</u> is currently an existing driveway located at the Tenth Street/Mt. Vernon Ave. intersection that appears to be seldom used. It shall be used for entering and exiting vehicles.
	i. <u>Driveway #7 (Int.#6)</u> is proposed and intended for inbound vehicles into the northwest parking lot. Locate the driveway sufficiently distant from Tenth Street and hospital driveways to avoid vehicle queuing conflicts. Alternately, align the driveway with a hospital driveway. Remove diagonal parking stripes on Jefferson Ave. west and east of the driveway to provide adequate sight distance in accordance with Chino Standard Drawing # 865. With the removal there will need to be coordination with the hospital across the street to resolve and mitigate their parking concerns.
2	Public Streets
A	a. Jefferson Ave – A two-way left turn lane shall be implemented upon removal of the diagonal parking along the south side of the street. The full extent of this lane is from Tenth St to Benson Ave.
	 Park Place – Post construction of the school, a speed study shall be done in order to implement the appropriate speed limit signs.
	c. Benson Ave/Park Place – Traffic signal modification may be required by removing the protected-permissive signal phasing for northbound traffic.
3.	The school shall provide a <u>school route plan</u> in a form of an exhibit, as per MUTCD Chapter 7, Section 7A.01 (sample attached to this submittal), that shows the streets, school, existing traffic controls, school crossings, and expected pedestrian routes for students and guests entering the site for both typical school days and special events. Extend the study to approximately 100 feet outside the school property and through pedestrian gates for the school. In addition, show the propose locations for marked crosswalks and curb ramps in the public right of way. This exhibit will be used to asses ADA paths within the public right of way for compliance to federal and state codes/requilations.
4.	 Level of Service Analysis a. Provide trip generation and distribution patterns for existing and post construction school traffic for City review and comments. Per the City General Plan, include intersections that are expected to experience more than 50 two-way peak hour trips. This study will be used to establish the list of intersections that will included in the Level of Service Analysis (LOS). The City can provide a cumulative project list for proposed developments in the City.
	At a minimum, provide a Level of Service analysis for the following intersections. Refer to the site plan 'Exhibit A' showing the study intersections:
	 i. Tenth St & Walnut Ave ii. Tenth St & Jefferson Ave iii. Tenth St & Mount Vernon Ave/<u>Driveway #6</u> iv. Tenth St & Gettysburg Ave/<u>Driveway #5</u> v. Tenth St & Washington Ave/<u>Driveway #4</u> vi. Tenth St & Park PI vii. Terth St & Riverside Dr.

CHINO HIGH SCHOOL RECONSTRUCTION - TRAFFIC STUDY REQUIREMENTS April 11, 2018 Page 2 of 2 viii. Driveway #7 & Jefferson Ave ix. 12th St & Park Pl x. Driveway #1 & Jefferson Ave xi. Driveway #3 & Park Pl xii. 13th St & Park PI xiii. Jacaranda Ave & Jefferson Ave xiv. Driveway #2 & Park Pl XV. 14th St & Jefferson Ave xvi. Benson Ave & Walnut Ave xvii. Benson Ave & Jefferson Ave xviii. Benson Ave & Monroe St xix. Benson Ave & Serene Ave Benson Ave & Park Pl. XX. xxi. Benson Ave & Riverside Dr. c. The LOS analysis should include the following scenarios: i. Existing and existing plus Project Build Out (2023?) without Project and with Project
 Long Range (2040) without Project and with Project 5. Provide traffic signal warrant analysis for the intersections at the corners of the site (intersections 1, 6, 14 and 17). Provide stop sign warrant analysis for the intersections between the corners (Intersections 3,4,5,7,10,11,13,15,16). 6. Provide a stacking and queuing analysis for each intersection at the four corners of the site (intersections 1, 6, 14 and 17). The analysis should be based on the Long Range (2040) traffic scenario. 7. Provide exhibits showing truck/bus turning templates for the intersections at the four corners of the site and at the existing and proposed driveways using the largest vehicle expected. For driveways that will have vehicles both entering and exiting the site, the templates should show that the movements can be done simultaneously. Also, show lane geometrics at Driveways 4-6 at the intersection to confirm proper flow through the intersection. Attachments: - Exhibit A - Sample School Route Plan Map

PRELIMINAR	Y REVIEW COMMENTS
CITY OF CHINO • PUBLIC W 13220 Central Avenue, PO Box 66	/ORKS DEPARTMENT 7, Chino, California 91708-0667 • (909) 334-3265 FAX (909) 334-3724
MEETING DATE: Decen	nber 6, 2017
COMMENTING DEPARTM	ENT/DIVISION OR AGENCY
	X ENGINEERING DOLICE X TRAFFIC
	FIRE X WATER/ENVIRONMENTAL
COMMENTS BY:	Isidro Abreo, Amanda Coker
PROJECT FILE NO .:	PL 17-0113 – (Prelim Review)
PROJECT LOCATION:	5472 Park Place (Chino HS)
PROJECT DESCRIPTION:	Reconstruction of school campus (parking lots, fields, buildings)
The following are general ar whole: Engineering 1. An 11-foot right-of-w Avenue (88-ft total	ROW, 44-ft from centerline) to comply with the City's General Plan
whole: Engineering 1. An 11-foot right-of-w Avenue (88-ft total Additional dedication Tenth Street and Par 2. Per the City's Gene	ray (ROW) dedication is required along property frontage on Benso ROW, 44-ft from centerline) to comply with the City's General Plan may be required along all other fronting streets: Jefferson Avenue k Place. eral Plan, Benson Avenue is intended to have a total curb-to-cur
 The following are general ar whole: Engineering An 11-foot right-of-weat Avenue (88-ft total Additional dedication Tenth Street and Parel 2. Per the City's Generatistance of 64 feet (3 that it is 20-ft from conschool site, there are be within the ultimate may need to be revi 	ray (ROW) dedication is required along property frontage on Benso ROW, 44-ft from centerline) to comply with the City's General Plan in may be required along all other fronting streets: Jefferson Avenue k Place. eral Plan, Benson Avenue is intended to have a total curb-to-cur 22 feet from centerline) to provide 2 travel lanes in each direction. Not enterline to curb face existing. Along the eastern portion of the existin e a couple sports fields including bleachers and other facilities that ma e ROW for which the new school's site plan, including the property lin sed. An In-lieu fee will need to be paid for these future improvement
 The following are general ar whole: Engineering An 11-foot right-of-weat Additional dedication Tenth Street and Part distance of 64 feet (3 that it is 20-ft from conschool site, there are be within the ultimate may need to be revise where the costs de frontage. Public improvement gutter, driveways, part ADA requirements. modified around obs include, but are not 	ray (ROW) dedication is required along property frontage on Benso ROW, 44-ft from centerline) to comply with the City's General Plar may be required along all other fronting streets: Jefferson Avenue

This page intentionally left blank.

C. Response to Comments from Warren Morelion, City of Chino, dated September 21, 2018

C-1 The Chino Valley Unified School District has not finalized all planning documents. To date the District has provided documents and has met in person with the City of Chino. The District has met with the City of Chino on three separate occasions to discuss the proposed Chino High School Reconstruction project: November 1, 2017, December 6, 2017, and a meeting with the project architect in June 2018.

Based on City comments the proposed reconstruction project incorporated City changes and site plan was revised. The District will continue to coordinate with the City on off-campus improvements.

C-2 The parking spaces along Jefferson are within the public right-of-way and are available for everyone. The Chino Valley Medical Center, the Lutheran Church, residential development, and the high school are adjacent to these parking spaces, and medical patients and staff; visitors and staff at the church; residents; and school visitors, students, and staff most likely all use these spaces. Because this is public parking, there are no spaces designated for specific businesses, and an accurate parking analysis would not identify parking needs for all uses along Jefferson Avenue.

Based on the City comments during the June meeting the District's understanding of the Cityrequested project revisions was the removal of all diagonal parking spaces along Jefferson and to convert these spaces to standard parallel parking. This revision was made.

This comment requests that the angled parking be retained. The District will revise the project so that the only angled parking spaces proposed to be removed would be within 50 feet of the new driveways to provide required line-of-sight for approaching bicycle and vehicle traffic. This is anticipated to be a loss of approximately 10 spaces at each driveway for a total of 20 spaces.

Based on the City of Chino Comment C-2, the MND has been revised to retain diagonal parking along most of the Jefferson Avenue south curb.

MND Initial Study, Chapter 5, page 134, Mitigation Measure T-3, is hereby modified as follows:

T-3 Convert <u>**Remove</u> Angled Street Parking.** To reduce visibility constraints along Jefferson Avenue and new school driveways, prior to the first day of classes in the new classroom buildings, the District shall ensure that the angled parking spaces on the south side of Jefferson Avenue <u>within 50 feet of the new driveways are free of obstacles including parked cars</u> between 10th Street and Benson Avenue are converted to conventional parallel parking spaces by removing the angled striping; new pavement markings are not required for conventional parallel parking. The District shall also paint a red curb on the south side of Jefferson Avenue for a length of 50 feet on each side of the two new driveways. All measures are subject to review and approval by the City of Chino.</u>

- C-3 The District has talked to the Chino Valley Medical Center administrators to discuss the proposed reconstruction project. Although there is no written agreement or requirement, the hospital and school district have a mutual verbal agreement that when an emergency medical helicopter needs to land they can use the athletic fields at Chino High School. At that time either the Chino Police Department or Fire Department opens the school gate along Jefferson Avenue. Patients are then transported to/from the helicopter from/to the hospital by ambulance. The distance from the current landing areas to the Jefferson Avenue gate is about the same and should not significantly increase travel time to/from the emergency room. No changes to the existing procedures would occur, and the new locations would not significantly impact the route, distance, or time for transport of patients. An aerial photograph with the existing and future location is attached as Appendix A.
- C-4 Traffic impacts are fully analyzed in a Traffic Impact Analysis (Appendix F of the Initial Study) and summarized in the Initial Study, Chapter 5, Section 5.16. As shown on Table 23, page 129, none of the surrounding intersections would be significantly impacted by the reconstruction of Chino High School. The emergency room access on 10th Street north of Jefferson Avenue would not be significantly impacted by the proposed project. The Walnut Avenue / 10th Street intersection is anticipated to have a 0.6 second increase in delay, and the Jefferson Avenue / 10th Street intersection is anticipated to have a 8.0 second delay. Based on the City of Chino traffic criteria these are not considered a significant impact.

The student parking lot would stay in the same location; therefore, student drivers would not change traffic flow on surrounding streets. The new on-campus staff parking lot along Jefferson Avenue would have 168 spaces, which would increase traffic; however, providing oncampus parking may reduce the number of cars parked in the angled spaces. Based on comments from the City, most of the angled parking spaces on Jefferson Avenue would remain.

- C-5 Traffic impacts are fully analyzed in a Traffic Impact Analysis (Appendix F of the Initial Study) and summarized in the Initial Study, Chapter 5, Section 5.16. As shown on Table 23, page 129, none of the surrounding intersections would be significantly impacted by the reconstruction of Chino High School. The Police Department at 5450 Walnut Avenue would not be significantly impacted by the proposed project. The Walnut Avenue / 10th Street intersection would see a 0.6 second increase in delay. Based on the City of Chino traffic criteria this is not considered a significant impact.
- C-6 The project site is on the Chino High School campus on a site zoned PS (public school). The PS zone does not have a height limit; however, the two-story campus buildings would be compatible with the two-story medical center to the north and the one- and two-story residential development to the east, south and west. Rooftop mechanical equipment such as HVAC units would be screened from public view.
- C-7 a. Traffic impacts are fully analyzed in a Traffic Impact Analysis (Appendix F of the Initial Study) and summarized in the Initial Study, Chapter 5, Section 5.16. The Traffic Impact Analysis analyzed the redistribution of traffic associated with the re-designed campus. Figure 5, *Redistribution of Existing School Traffic* shows the anticipated volumes of peak hour traffic that would be shifted to the north side of the high school as a result of the new layout. The figure shows, for example, that during the AM peak hour 280 vehicles that currently arrive at the

school via Park Place from Benson Avenue, 10th Street, 12th Street, and 13th Street would be redistributed to the Jefferson Avenue driveway and to the three driveways along 10th Street. Also, Figure 4, *Project Generated Traffic – Expanded School* shows that most of the student increase is assigned to the northwest corner of the school site via Jefferson Avenue instead of the southern area of the school. It should be noted that the student parking lot would not be relocated and would remain on the south side of the campus adjacent to Park Place, so most of the student-related traffic and some of the drop-offs/pick-ups would continue to occur off Park Place.

- b. The traffic calculation worksheets are included as Attachment B to this response to comment document.
- c. The traffic analysis addressed existing conditions and the projected year 2024 traffic conditions for the scenarios with and without the project. The long-range future conditions for the year 2040 were not addressed because baseline traffic volume forecasts were not available for that year. The District's traffic engineer contacted the City of Chino and San Bernardino County to request future traffic forecasts, but no such data existed for the streets and intersections that were evaluated in the traffic study. The scenarios that were addressed in the analysis satisfy the CEQA requirements as a long-range future analysis is not required.
- d. Items Comments a, b, and c above have been addressed and will not change the outcome of the LOS analysis and warrant studies.
- e. A traffic signal warrant analysis was conducted for the three intersections at the corners of the school site that are not currently signalized: 10th Street/Jefferson Avenue, 10th Street/Park Place, and Benson Avenue/Jefferson Avenue. The analysis was based on the projected traffic volumes for the year 2024. As shown on the Traffic Calculation Worksheets (Attachment B), the peak hour traffic volumes are below the threshold levels that would justify the installation of a traffic signal. As the existing traffic volumes are lower than the projected 2024 traffic volumes, it was unnecessary to also conduct an analysis for the existing scenario. As traffic forecasts are not available for the year 2040 (see response to Comment c above), an analysis of that scenario was not conducted.

A stop sign warrant analysis was conducted for 11 intersections to determine if additional stop signs should be installed to create multi-way stops; i.e., 3-way stops at "T" intersections or 4-way stops at four-leg intersections. As detailed in the Traffic Impact Analysis (Appendix F of the Initial Study), the projected 2024 traffic volumes at each intersection are below the threshold levels that would justify the installation of multi-way stop signs.

The project includes Mitigation Measure T-1 that requires a 4-way stop at 10th Street / Jefferson Avenue intersection to mitigate the safety concerns associated with the increased levels of vehicles, pedestrians, and bicycles.

- f. The school district site plans have been designed to accommodate the current number of buses and will comply with bus turning requirements, similar to other schools in the District.
- g. The traffic signal at the Benson Avenue/Park Place intersection is currently equipped with a protected-permissive left-turn phase for the northbound-to-westbound traffic movement.

With this design, the signal displays a left-turn arrow (protected phase) followed by a regular green light that allows motorists to turn left if there is a gap in the opposing southbound traffic (permissive phase). This type of operation increases the capacity of the intersection by allowing a greater number of vehicles to turn left during each signal cycle, but it also increases the number of conflicts involving left-turning traffic. Because the proposed project would result in a decrease in the number of vehicles turning left at this location, project-related traffic would not adversely impact the safety conditions involving left-turning traffic. A modification of the traffic signal to convert the protected-permissive phasing to a protected-only phase would not be required as a component of or a mitigation measure for the school project.

C-8 The District's first priority is the safety of students and staff; therefore, the District will consult with the City to improve existing deficiencies in the City's infrastructure. However, the high school is an existing use, and students currently use the existing curbs, sidewalks, crosswalks, and push button signals. At project completion, the land use would still be a high school.

CEQA requires an analysis of the physical impacts on the environment as a result of a proposed project. There is no requirement under CEQA to mitigate for existing deficiencies. CEQA requires the lead agency to evaluate project impacts compared to the existing baseline conditions and to incorporate mitigation measures to reduce project-related impacts. This analysis has been conducted in the MND, and no project-related infrastructure impacts were identified. The Chino Valley Unified School District Board of Education will consider all comments prior to making a decision on the project

- C-9 Please see response to Comment C-8 regarding requested infrastructure improvements.
 - a. Similar to existing conditions, some students and staff/faculty would walk or bike to and from the school. The streets in the school vicinity have sidewalks along both sides, and the signalized intersections are equipped with painted crosswalks, pedestrian push buttons, and signals. The unsignalized intersections have painted crosswalks across the critical roadway approaches.

Benson Avenue/Jefferson Avenue is a T-intersection. There is a yellow crosswalk across Jefferson. The City is requesting two more crosswalks across Benson Avenue. Similar to the midblock crossing at the T-intersection of Mt. Vernon Avenue and 10th Street a midblock crosswalk on Benson Avenue may not be advisable. The Benson Avenue/Jefferson Avenue was evaluated to determine if a traffic signal or 3-way stop signs would be warranted and the study concluded that the projected traffic volumes are below the thresholds that would justify the installation of these additional traffic control devices (see Attachment C for Traffic Signal Warrant Analysis Worksheets). It is not anticipated that a substantial number of pedestrians would be crossing Benson Avenue at this intersection because there is no direct link into the residential area to the east. For purposes of the CEQA analysis, no mitigation measures have therefore been identified for this intersection. The District will, however, work cooperatively with the City to determine if it would be advantageous to install stop signs and/or crosswalk markings at this intersection.

b. to f. Please see response to Comment C-8 regarding infrastructure, curb ramps, and sidewalks.

2. Response to Comments

- C-10 a. Although the WQMP was not specifically identified in the document, it is understood that the District would comply with all required regulations. Specifically, the District would utilize the Technical Guidance Document for Water Quality Management Plans to prepare the required stormwater treatment facilities.
 - b. The project utility needs were analyzed in Chapter 5.18 of the Initial Study. Reconstruction of the existing high school would not require construction of new or expanded utility facilities (water, wastewater, drainage, landfill). The high school currently serves students living in the region, and the reconstructed school would not increase long-term regional utility demands.
 - c. Drainage was analyzed in Chapter 5.18 of the Initial Study. The existing high school is discharging stormwater into the surrounding drainage system. The project would not require the construction of expanded off-campus storm drains. In fact the project would improve stormwater drainage from the school by reducing the flow and treating stormwater before it exits the campus in compliance with LID and WQMP.
 - d. The District will work with the City and will comply with all required regulations.
 - e. i. See response to Comment C-8.
 - ii. This comment contradicts Comment C-1, which states that most of the angled parking should remain. Changes to the existing lane configuration would not be required because of the angled parking.
 - f. Please see response to Comment C-7g regarding Benson Avenue widening dedication area.
 - g. The project site is an existing high school where students are already walking and biking to the site. The proposed project would not change the land use or significantly increase the number or location of students. Please see response to Comment C-8.

2. Response to Comments

This page intentionally left blank.

Attachment A. Emergency Helicopter Landing Area

This page intentionally left blank.

Attachment B. Traffic Calculation Worksheets

This page intentionally left blank.

LEVEL OF SERVICE ANALYSIS CALCULATION/OUTPUT SHEETS

SIGNALIZED INTERSECTIONS

General Informa																
Contertar Informa	Y								Inte	ersect	ion Infe	ormatic	n		1474t	 }= l
Agency		Chino Valley LISD							<u></u>	ration,		0.95				
Analyst		R Garland		Analys	vie Dat	e Mar 9	2018			ea Type		Other				N N
Jurisdiction		City of Chino		Time F			, 2018 eak Hou	r	PH		5	0.95		*	w‡e	
Intersection		-	rk Dlaac						<u> </u>		Doriod	1> 7:0	0	4 4		
Intersection		Benson Avenue/Pa	IK Place	Analys	is rea	Proje	Existing ct	INO	Ana	alysis l	Penou	1 1.0	0			[,]
File Name		Benson Park 2018	Existing	No Pro	j.xus										ן ראיז או	ት ሰ
Project Description	on	Chino High School	Moderni	ization												
Demand Informa	ation				EB			١٨	√B			NB			SB	
Approach Moven				L	T	R	L		Т	R			R	L	T	R
Demand (v), veh				80	0	120		-	·		260	330			300	180
Demand (v), ven	/11			00	0	120					200	550			500	100
Signal Informati	ion					21								•		
Cycle, s	92.2	Reference Phase	2		81		ĸ							N .	-	-
Offset, s	0	Reference Point	End	Green	12.3	30.0	19.9	0.	0	0.0	0.0	_	1	2	3	
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.		0.0	0.0	-				
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.		0.0	0.0		5	6	7	8
										(D.T.			NET	0.0		
Timer Results				EBI		EBT	WB		VV	/BT	NBL		NBT	SB		SBT
Assigned Phase					+	4		\rightarrow		_	5		2			6
Case Number						10.0	<u> </u>	\rightarrow		_	1.0		4.0			7.3
Phase Duration,					+	24.9	<u> </u>	-		_	17.3	_	52.3			35.0
	hange Period, (Y+Rc), s lax Allow Headway (MAH), s				+	5.0	<u> </u>	-		_	5.0		5.0	<u> </u>		5.0
	lax Allow Headway (MAH), s				_	3.5	<u> </u>	\rightarrow		_	3.1	_	3.1			3.1
	ueue Clearance Time (gs), s				\rightarrow	9.4	<u> </u>	-			11.7		12.7			15.2
Green Extension		(ge), s				0.5	<u> </u>	-		_	0.5		1.7	<u> </u>		1.7
Phase Call Proba						1.00		-		_	1.00		1.00	<u> </u>		1.00
Max Out Probabi	mty					0.00					0.00		0.00			0.00
Movement Grou	up Res	ults			EB			W	В			NB			SB	
Approach Moven	-			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Movem	nent			7	4	14					5	2			6	16
Adjusted Flow Ra	ate <i>(v</i>),	, veh/h		84	126						274	347			316	189
Adjusted Saturat	ion Flo	w Rate <i>(s)</i> , veh/h/ln		1619	1357	·					1619	1800			1800	1516
Queue Service T	īme (g	s), S		4.0	7.4						9.7	10.7			13.2	8.9
Cycle Queue Cle	earance	e Time <i>(gc</i>), s		4.0	7.4				Ť		9.7	10.7			13.2	8.9
Capacity (c), veh	ı/h			350	293						490	923			586	493
Volume-to-Capac	city Ra	tio (X)		0.241	0.43	I					0.559	0.376			0.539	0.384
Available Capaci	ity (Ca),	veh/h		878	736						977	1953			1953	1645
Back of Queue (Q), veh	n/In (50th percentile)		1.5	2.4						3.4	4.1			5.5	3.1
Overflow Queue	(Q3), v	reh/In		0.0	0.0						0.0	0.0			0.0	0.0
Queue Storage F	Ratio <i>(F</i>	RQ) (50th percentile)	0.00	0.00						0.00	0.00			0.00	0.00
Uniform Delay (d	1), s/ve	eh		29.9	31.2						16.7	13.6			25.4	24.0
Incremental Dela	ay (d2),	s/veh		0.1	0.4						0.4	0.1			0.3	0.2
Initial Queue Del	nitial Queue Delay (d3), s/veh				0.0						0.0	0.0			0.0	0.0
Control Delay (d)	control Delay (d), s/veh										17.0	13.7			25.7	24.1
Level of Service	evel of Service (LOS)										В	В			С	С
Approach Delay,		31.0)	С	0.0				15.1		В	25.	1	С		
Intersection Dela	ay, s/ve	h / LOS				2	1.4							С		
Multimodal Res		// 00			EB			W				NB			SB	_
Pedestrian LOS				2.3	_	B	2.3		E	B	1.9		A	2.3		В
Bicycle LOS Sco	ore / LC	15		0.8		A					1.5		A	1.3		A

	HCS 2	010 S	ignal	zed	Inters	ection	Re	sults	Sur	mma	ary				
General Information	<u> </u>							Intoro	ootio	n Infe	ormatic			┙┫┶┶╺╽	له ل
	v.							<u></u>			V	n	- 1	↓ L	
Agency	Chino Valley USD		A			0040		Durati			0.95				R.
Analyst	R Garland		1		e Mar 9			Area T	уре		Other			wŤe	2
Jurisdiction	City of Chino		Time F			eak Hou		PHF	ia Da	wie el	0.95	0			+
Intersection	Benson Avenue/Pa	rk Place	Analys	sis rea		Existing Project		Analys	sis Pe	erioa	1> 7:0	0		K A	·
File Name	Benson Park 2018	Existing	w Proj.	xus	_,	-		л			. п.] ◀↑ቀ⋎	۲
Project Description	Chino High School	Modern	ization												
Demand Informatio	n			EB			V	/B			NB			SB	
Approach Movemen			L	Т	R	1		17	२	L	Т	R	L	T	R
Demand (v), veh/h	-		64	0	106	<u> </u>	┢		·	183	389		<u> </u>	394	99
Signal Information		1			21	a							-+		_
Cycle, s 89.		2		1 50	1.50	R						1		3	-€ ₄
Offset, s 0	Reference Point	End	Green	9.9	30.0	19.8	0.	0 0.	.0	0.0		-			
Uncoordinated Yes		On	Yellow	4.0	4.0	4.0	0.	0 0.	.0	0.0	_		1		
Force Mode Fixe	d Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.	0 0	.0	0.0	_	5	6	7	8
Timer Results			EB		EBT	WBI		WBT		NBL		NBT	SB	L	SBT
Assigned Phase					4					5		2			6
Case Number					10.0		-			1.0		4.0			7.3
Phase Duration, s					24.8					14.9		49.9			35.0
	hange Period, (Y+Rc), s				5.0		-			5.0		5.0			5.0
	lax Allow Headway <i>(MAH)</i> , s				3.5					3.1		3.1			3.1
-	lax Allow Headway <i>(MAH)</i> , s Jueue Clearance Time <i>(gs),</i> s				8.2		-			8.5		15.2			19.9
Green Extension Tim					0.4					0.3		1.8			1.8
Phase Call Probabili					0.99					0.99		1.00	1		1.00
Max Out Probability					0.00					0.00		0.00			0.00
								_							
Movement Group R				EB		<u> </u>	W	1	_		NB	-	<u> </u>	SB	
Approach Movemen			L	Т	R	L	Т	R	_	L	Т	R	L		R
Assigned Movement			7	4	14			_		5	2		<u> </u>	6	16
Adjusted Flow Rate			67	112				_		193	409		<u> </u>	415	104
-	Flow Rate (s), veh/h/ln		1619	1361				_		619	1800			1800	1516
Queue Service Time			3.0	6.2				_		6.5	13.2			17.9	4.4
Cycle Queue Cleara Capacity (c), veh/h	nce nime (<i>gc</i>), s		3.0	6.2 300				_	_	6.5 393	13.2 901			17.9 602	4.4 507
Volume-to-Capacity	Patio (X)		357 0.189	0.372	>			_	_	.490	901 0.454			0.689	0.205
Available Capacity (. ,		902	759	-					.490 936	2007			2007	1690
	veh/In (50th percentile)		1.2	2.0				_		2.2	5.0			7.3	1.5
Overflow Queue (Q3	,		0.0	0.0						0.0	0.0			0.0	0.0
	o (RQ) (50th percentile	:)	0.00	0.00						0.00	0.00			0.00	0.00
Uniform Delay (d1), s		,	28.4	29.7	_				_	17.2	14.5			25.8	21.3
Incremental Delay (c			0.1	0.3						0.4	0.1			0.5	0.1
• ·	nitial Queue Delay (d3), s/veh									0.0	0.0			0.0	0.0
	Control Delay (d), s/veh									17.5	14.6			26.3	21.4
	evel of Service (LOS)									В	В			С	С
	Approach Delay, s/veh / LOS					0.0				15.5		В	25.		С
Intersection Delay, s			29.4		C 2'	1.4							С		
Multimodal Results				EB			W				NB			SB	
Pedestrian LOS Sco			2.3		В	2.3		В		1.9		А	2.3		В
Bicycle LOS Score /	LOS		0.8		А					1.5		А	1.3	3	А

General Inform	nation								Int	tersect	tion Inf	ormatio	on		1 4 74+	<u>ب</u> ا ط
Agency		Chino Valley USD								uration,		0.95			7 †	
Analyst		R Garland		Analys	sis Date	Mar 9,	2018			еа Тур		Other		4		4
Jurisdiction		City of Chino		Time F			ak Hou	r	PH			0.95		→^	W + E	24
Intersection		Benson Avenue/Pa	rk Place			_	Vithout			alysis	Period	1> 7:(00	*		*
				Ĺ		Projec	t			,					<u> ካ</u> ተ	[*]
File Name		Benson Park 2024	No Proj	.xus											 ነ ጓ ተ ቅም	7 4
Project Descrip	tion	Chino High School	Modern	ization												
Demand Inform	nation				EB			V	/B			NB			SB	
Approach Move				L	Т	R			T	R		Т	R	L	T	R
Demand (v), ve				82	0	122	<u> </u>	┢			263	337		<u> </u>	311	184
											200				•	
Signal Informa	tion					2										
Cycle, s	92.3	Reference Phase	2		51	<u>т</u>	₩.							N	-	÷
Offset, s	0	Reference Point	End	Green	12 4	30.0	19.9	0.	0	0.0	0.0	_	1		3	M 4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.		0.0	0.0		$\langle \langle \langle \rangle \rangle$			
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.	0	0.0	0.0		5	6	7	8
Timer Results			_		_	EDT		_	10		NDI		NDT			ODT
				EBL		EBT	WBL	-+	V	VBT	NBL	-	NBT	SB		SBT
Assigned Phase	e					4		\rightarrow		_	5		2	<u> </u>	_	6
Case Number						10.0				_	1.0		4.0	<u> </u>		7.3
	hase Duration, s hange Period, <i>(Y+Rc)</i> , s			<u> </u>		24.9		\rightarrow		_	17.4	_	52.4	<u> </u>	_	35.0
					_	5.0		\rightarrow		_	5.0		5.0			5.0
	lax Allow Headway <i>(MAH)</i> , s ueue Clearance Time <i>(g_s),</i> s					3.5		\rightarrow		_	3.1	\	3.1	<u> </u>	_	3.1
					_	9.6		+		_	11.9		13.0			15.9
Green Extensio		(ge), S			_	0.5		_		_	0.5		1.7	<u> </u>	_	1.7
Phase Call Prol				<u> </u>		1.00		_		_	1.00		1.00			1.00
Max Out Proba	DIIITY					0.00					0.00)	0.00			0.00
Movement Gro	oup Res	sults			EB			W	В			NB			SB	
Approach Move	-			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move				7	4	14	_	· ·	+		5	2		-	6	16
Adjusted Flow F		veh/h		86	128				+		277	355			327	194
-	. ,	ow Rate <i>(s)</i> , veh/h/ln		1619	1356				+		1619	1800			1800	1516
, Queue Service				4.1	7.6						9.9	11.0			13.9	9.1
Cycle Queue C				4.1	7.6				+		9.9	11.0			13.9	9.1
Capacity (c), ve				349	293						482	924			585	493
Volume-to-Capa		atio <i>(X)</i>		0.247	0.439						0.574	0.384			0.560	0.393
Available Capa		. ,		877	735						966	1949			1949	1642
		h/In (50th percentile))	1.6	2.4						3.4	4.2			5.7	3.2
Overflow Queue		, , ,		0.0	0.0						0.0	0.0			0.0	0.0
		RQ) (50th percentile	:)	0.00	0.00						0.00	0.00			0.00	0.00
Uniform Delay (,	30.0	31.4						16.8	13.6			25.7	24.1
Incremental De				0.1	0.4						0.4	0.1			0.3	0.2
				0.0	0.0						0.0	0.0			0.0	0.0
	nitial Queue Delay (dȝ), s/veh control Delay (d), s/veh				31.7						17.2	13.7			26.0	24.3
• •	evel of Service (LOS)				С						В	В			С	С
Approach Delay	. ,			31.1		С	0.0				15.3		В	25.		С
	ntersection Delay, s/veh / LOS					21	L							С		
	•															
Multimodal Re	sults				EB			W	В			NB			SB	
	edestrian LOS Score / LOS					В	2.3			В	1.9		Α	2.3	3	В
Pedestrian LOS	rcle LOS Score / LOS															

		HCS 20	010 S	ignali	zed	Inters	sect	tion	Re	sι	ults S	umma	ary				
Concept Inform	nation									In	torooo	tion Inf	o recetio		1	1 4 7 4 1	لمعل
General Inform	nation											tion Info	V	on	- 1	ļļ	
Agency		Chino Valley USD									uration,		0.95				
Analyst		R Garland				te Mar				<u></u>	rea Typ	e	Other		^ ^		
Jurisdiction		City of Chino		Time F				Hour	_		HF		0.95			W + E S	₩ +
Intersection		Benson Avenue/Par			sis Yea	ar 2024	Wit	h Proj	ect	A	nalysis	Period	1> 7:0	00			۲ ۲
File Name		Benson Park 2024														ካ ተ	
Project Descrip	otion	Chino High School	Modern	ization												I ◀ ↑ ቍ\Y	* (*
Demand Inform	mation				EB				W	/B			NB			SB	
Approach Move				L	Т	R		L	1	Г	R		Т	R	L	T	R
Demand (v), ve				66	0	108	3				<u> </u>	186	396		<u> </u>	405	103
					Ū												
Signal Informa	ation					21											
Cycle, s	89.7	Reference Phase	2		51	n sy	ΓĒ	£.							N	_	- € .
Offset, s	0	Reference Point	End	Green		30.0		<u>19.8</u>	0.0	0	0.0	0.0		1	2	3	¥ 4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0		1.0	0.0		0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0		1.0	0.0	0	0.0	0.0		5	6	7	8
									1								
Timer Results				EBI	-	EBT	-	WBL		۷	NBT	NBL	-	NBT	SB		SBT
Assigned Phas	е					4	-			_		5		2			6
Case Number						10.0	╞		_			1.0		4.0			7.3
Phase Duration						24.8	┶		_			14.9) /	49.9			35.0
Change Period						5.0	+		_			5.0		5.0			5.0
	lax Allow Headway (<i>MAH</i>), s				\rightarrow	3.5	┶		_			3.1		3.1		_	3.1
	ueue Clearance Time (g_s) , s				_	8.4	╞		_			8.6		15.5			20.5
Green Extensio		(g _e), s			_	0.4	+-		_			0.4		1.9	<u> </u>		1.9
Phase Call Pro	-					0.99	+		_			0.99		1.00			1.00
Max Out Proba	bility					0.00						0.00)	0.00			0.00
Movement Gro	oup Res	ults			EB		Т		WE	3			NB			SB	
Approach Move	ement			L	Т	R	Г	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ement			7	4	14	T					5	2			6	16
Adjusted Flow	Rate <i>(v)</i>	, veh/h		69	114		Т					196	417			426	108
Adjusted Satura	ation Flo	w Rate <i>(s)</i> , veh/h/ln		1619	1361	1	T					1619	1800			1800	1516
Queue Service	Time (g	(s), S		3.1	6.4							6.6	13.5			18.5	4.6
Cycle Queue C	learance	e Time <i>(g₀</i>), s		3.1	6.4							6.6	13.5			18.5	4.6
Capacity (c), ve	eh/h			357	300		Г					384	901			602	507
Volume-to-Cap		tio <i>(X)</i>		0.195	0.379	9						0.510	0.462			0.708	0.214
Available Capa	-			902	759		Г					927	2006			2006	1690
· ·		n/In (95th percentile)		2.2	3.7		T					4.1	8.8			12.2	2.9
Overflow Queu		, , ,		0.0	0.0		T					0.0	0.0			0.0	0.0
Queue Storage	Ratio (I	RQ) (95th percentile)	0.00	0.00							0.00	0.00			0.00	0.00
Uniform Delay	(d1), s/ve	eh		28.5	29.7							17.4	14.6			26.0	21.4
Incremental De	lay (d₂),	s/veh		0.1	0.3							0.4	0.1			0.6	0.1
Initial Queue D	/			0.0	0.0							0.0	0.0			0.0	0.0
Control Delay (28.6	30.0							17.8	14.7			26.6	21.5
Level of Service	, ,			С	С							В	В			C	С
Approach Dela				29.5	5	С		0.0				15.7	7	В	25.6	6	С
Intersection De	lay, s/ve	h / LOS				2	21.6								С		
																07	
Multimodal Re		11.00		0.0	EB		-	0.0	WE	3		4.0	NB	Δ		SB	
Pedestrian LOS				2.3 0.8	_	B	-	2.3			В	1.9	_	A	2.3		B
DICYCLE LOS SC	cle LOS Score / LOS					A						1.5		A	1.4		A

		HCS 2	010 5	ignali	zea I	nters	ectior	i Res	suits S	umm	ary				
General Inform	nation								Intersec	tion Inf	ormatic	on		4 74†	ليا م <u>ل</u>
Agency	lution	Chino							Duration		0.95		┤▁┛	2 I I V	
Analyst		R Garland		Analys	sis Date	Mar 9	2018		Area Typ		Other		N		ľ
Jurisdiction		City of Chino		Time F			eak Hou		PHF		0.95		$\rightarrow \rightarrow$	w∔e	
Intersection		Benson Avenue/Riv	verside l				Existing		Analysis	Period	1> 7:0	າດ			
Intersection							ut Proje		7 (101) 515	i chou		50			' <u></u> '
File Name		Benson Riverside 2	2018 Exi	ist No P	roj.xus] /* 제 1 주 주	P (*
Project Descript	tion	Chino High School	Modern	ization											
Demand Inform	nation				EB			W	3		NB			SB	
Approach Move				L	T	R	L	Т	R	L	Т	R	L L	T	R
Demand (v), ve				50	440	40	80	88		100	200	50	160	190	90
					110	10	00	00		100	200	00	100	100	
Signal Informa	tion				5	125									I
Cycle, s	70.9	Reference Phase	2	1	R	- 	2						4	· ·	Ц Д
Offset, s	0	Reference Point	End	Green	-	25.0	0.0	0.0	0.0	0.0		1	M ²	3	
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	0.0	0.0		0.0			\mathbf{r}		st.
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0		0.0		5	6	7	ľ
Thus D. I						FDT						NET	0.51		0.0.7
Timer Results				EBI		EBT	WB		WBT	NB	_	NBT	SBI		SBT
Assigned Phase	e				_	2			6			8		\rightarrow	4
Case Number						5.0			6.0			6.0		\rightarrow	5.0
Phase Duration						40.9			40.9		_	30.0		\rightarrow	30.0
	hange Period, (Y+R₂), s lax Allow Headway <i>(MAH)</i> , s					5.0	<u> </u>		5.0			5.0		\rightarrow	5.0
	lax Allow Headway (<i>MAH</i>), s					3.3	<u> </u>		3.3			3.3		\rightarrow	3.3
	ueue Clearance Time (g_s), s					30.3	<u> </u>		22.3			12.6	<u> </u>	\rightarrow	19.6
Green Extensio		(ge), s		<u> </u>		5.8	<u> </u>		5.8	<u> </u>		1.8	<u> </u>	\rightarrow	1.8
Phase Call Pro						1.00		_	1.00			1.00			1.00
Max Out Proba	ollity					0.00			0.00			0.00			0.00
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	-			L	T	R	L	T	R	L	Т	R	L	T	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F		veh/h		53	463	42	84	655	587	105	263		168	200	95
	. ,	ow Rate <i>(s)</i> , veh/h/ln		453	1714	1480	930	1800		1162	1720		1106	1800	1452
Queue Service		. ,		7.4	5.5	1.0	4.1	20.0	_	5.1	8.2		9.6	5.7	3.2
Cycle Queue C		•		28.3	5.5	1.0	10.2	20.0		10.6	8.2		17.6	5.7	3.2
Capacity (c), ve				196	1728	746	491	908	807	423	609		369	638	514
Volume-to-Capa		atio <i>(X)</i>		0.269	<u> </u>	0.056	0.172	0.722		0.249	0.432		0.456	0.314	0.18
Available Capa	-			608	4854	2096	1339	2549	_	1657	2437		1544	2549	2056
· · ·	• • •	h/In (50th percentile))	0.8	1.8	0.3	0.8	6.9	6.3	1.3	3.0		2.3	2.1	1.0
Overflow Queue		, , ,		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Queue Storage	Ratio (RQ) (50th percentile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
Uniform Delay ((d1), s/v	eh		25.1	10.0	8.9	13.2	13.6	13.7	20.3	17.4		24.0	16.6	15.8
Incremental De	lay (d2),	, s/veh		0.3	0.0	0.0	0.1	0.4	0.5	0.1	0.2		0.3	0.1	0.1
Initial Queue De	nitial Queue Delay (<i>d</i> ₃), s/veh					0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (Control Delay <i>(d)</i> , s/veh					8.9	13.2	14.1	14.2	20.4	17.6		24.3	16.7	15.8
Level of Service	evel of Service (LOS)					Α	В	В	В	С	В		С	В	В
Approach Delay	, s/veh	/LOS		11.4	1	В	14.1	1	В	18.4	1	В	19.3	3	В
Intersection Del	lay, s/ve	eh / LOS				15	5.0						В		
Multimodal Re		// 00			EB	D		WB			NB	0		SB	<u> </u>
Pedestrian LOS				2.2		В	2.4		B	2.8		C	2.9		C
Bicycle LOS Sc	ore / LC	72		0.9		А	1.6		A	1.1		A	1.3		A

		HCS 2	010 S	ignali	zed l	nterse	ection	n Res	ults S	umm	ary				
General Inform	ation								ntorooo	tion Inf	ormatic			4 ↓4↓	<u>ل</u>
	ation								ntersec			on	- 1	717	
Agency		Chino							Duration		0.95				
Analyst		R Garland				Mar 9			Area Typ	e	Other	•	4 — ¹ → →		*
Jurisdiction		City of Chino		Time F			eak Hou		PHF		0.95			W∔E S	↓ ↓
Intersection		Benson Avenue/Riv	/erside l	Analys	sis Year		Existing Project	· / /	Analysis	Period	1> 7:(00		54	
File Name		Benson Riverside 2	2018 Exi	st w Pro	oj.xus								1	<u>।</u> বিকিপ	1
Project Descript	tion	Chino High School	Modern	ization											
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), ve				44	440	40	80	910) 294	120	194	50	211	217	92
Signal Informa	tion	v			_ ₹	215							_		X
Cycle, s	71.6	Reference Phase	2		R		2						€ .		sta -
Offset, s	0	Reference Point	End	Green		25.6	0.0	0.0	0.0	0.0		1	× ×	3	
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	0.0	0.0	0.0	0.0			$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		512
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0	0.0	0.0		5	6	7	T a
				1											
Timer Results				EBI	-	EBT	WB	L	WBT	NB	L	NBT	SBI		SBT
Assigned Phase	e					2			6			8			4
Case Number						5.0			6.0			6.0			5.0
Phase Duration					_	41.0			41.0		_	30.6		\rightarrow	30.6
-	hange Period, (Y+R₀), s lax Allow Headway (MAH), s					5.0			5.0			5.0		\rightarrow	5.0
	lax Allow Headway (MAH), s					3.3			3.3			3.3		\rightarrow	3.3
	ueue Clearance Time (g_s), s					29.7			23.1			15.2			23.6
Green Extensio		<i>(g</i> e), s				5.8			5.8			2.1		\rightarrow	2.1
Phase Call Prob						1.00			1.00			1.00			1.00
Max Out Probal	bility					0.00			0.00			0.00			0.00
Movement Gro		ulte			EB			WB			NB			SB	
Approach Move		Suits			T	R	L	T	R	L		R	1		R
Assigned Move				L 5	2	12		<u> </u>	16	3		18	7		
		veb/b				42	1 84	6			8	10	222	4 228	14 97
Adjusted Flow F	. ,			46	463			666	601	126	257	<u> </u>		-	
		w Rate <i>(s)</i> , veh/h/ln	1	442	1714	1480	930	1800 20.8	1608 21.1	1134 6.6	1719 8.2		1112	1800	1452
Queue Service		•		6.6 27.7	5.5 5.5	1.0 1.0	4.0 9.3	20.8	21.1	13.2	8.2		13.6 21.6	6.8 6.8	3.3 3.3
-		e fille (<i>gc)</i> , s						913	816	398	607			636	513
Capacity (c), ve Volume-to-Capa		tio (X)		195 0.238	1739 0.266	751 0.056	505 0.167	0.730		0.318	0.423		370 0.601	0.359	0.189
Available Capa	-	. ,		585	4767	2059	1327	2504	_	1575	2391		1524	2504	2019
-	• • •	, ven/n n/In (50th percentile)		0.7	1.8	0.3	0.8	7.2	6.6	1575	3.0		3.3	2504	1.0
Overflow Queue		, , ,	/	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
		RQ) (50th percentile	.)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
Uniform Delay (., .	·)	24.8	10.1	9.0	12.6	13.8	13.9	22.0	17.7		25.8	17.2	16.1
Incremental Del				0.2	0.0	0.0	0.1	0.4	0.5	0.2	0.2		0.6	0.1	0.1
				0.2	0.0	0.0	0.0	0.4	0.0	0.2	0.2		0.0	0.0	0.0
	nitial Queue Delay <i>(d₃)</i> , s/veh Control Delay <i>(d</i>), s/veh					9.0	12.7	14.3	14.4	22.2	17.8		26.4	17.3	16.2
	evel of Service (LOS)					A	B	B	B	C	B		C	B	B
						B	14.2		B	19.3		B	20.8		C
Level of Service	Approach Delay, s/veh / LOS						5.6	-	U	13.0		U	B	,	0
Level of Service Approach Delay		h/105				15							J		
Level of Service		eh / LOS													
Level of Service Approach Delay	ay, s/ve	eh / LOS			EB			WB			NB			SB	
Level of Service Approach Delay Intersection Del	ay, s/ve sults			2.2		B	2.4		В	2.8		С	2.9	-	С

		HCS 2	010 3	ignan	zeu i	nters	ection		suns a	umm	ary				
General Inform	nation							-	Intersec	tion Inf	ormatic	on		4 74†	ليا مل
Agency	lation	Chino							Duration		0.95		┤▁	24 L	
Analyst		R Garland		Analys	sie Date	Mar 9	2018		Area Typ		Other		×		
Jurisdiction		City of Chino		Time F			eak Hou	ır	PHF		0.95		$\rightarrow \rightarrow$	w‡e	 →
Intersection		Benson Avenue/Riv	vorsido I	<u></u>		_	Without		Analysis	Period	1> 7:0	0			۲. ۲
Intersection		Denson Avenue/IN		Analys	515 1 Cai	Projec			Analysis	i enou	1-1.			K. 4.	·
File Name		Benson Riverside 2	024 No	Proj.xu	s								1 5	ין רייד די	P (*
Project Descrip	tion	Chino High School	Modern	ization											
Demand Inform	nation				EB			W	R		NB			SB	
Approach Move				L	T	R	L	Т		L	Т	R	L	T	R
Demand (v), ve				51	460	41	99	110		_	206	51	162	197	91
	, , , , , , , , , , , , , , , , , , , ,			01	400	1 41	00		012	101	200		102	101	51
Signal Informa	ation				. 2	215									
Cycle, s	110.5	Reference Phase	2		R		2						A		<u>Т</u> Т
Offset, s	0	Reference Point	End	Green	-	34.6	0.0	0.0	0.0	0.0	_	1	Y ²	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	0.0	0.0		0.0					512
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0		0.0		5	6	7	I I I I I I I I I I
Thus D. If						FDT			MOT			NET	0.5		OPT
Timer Results				EBI		EBT	WB		WBT	NB	_	NBT	SBI		SBT
Assigned Phase	e			<u> </u>		2		\rightarrow	6	<u> </u>	_	8	<u> </u>	\rightarrow	4
Case Number				<u> </u>		5.0			6.0	<u> </u>		6.0	<u> </u>	\rightarrow	5.0
Phase Duration				<u> </u>		70.9		\rightarrow	70.9	<u> </u>		39.6	<u> </u>	\rightarrow	39.6
	hange Period, (Y+ <i>R</i> c), s lax Allow Headway <i>(MAH</i>), s					5.0			5.0	<u> </u>		5.0	<u> </u>	\rightarrow	5.0
	lax Allow Headway (MAH), s					3.3		-	3.3			3.3		\rightarrow	3.3
	ueue Clearance Time (g_s), s reen Extension Time (g_e), s				_	56.6		_	40.6	<u> </u>		20.7	<u> </u>	\rightarrow	33.0
		(ge), s			_	8.1		\rightarrow	8.2			1.9	<u> </u>	\rightarrow	1.9
Phase Call Pro						1.00		-	1.00	<u> </u>		1.00	<u> </u>		1.00
Max Out Proba	DIIITY					0.03			0.01			0.00			0.00
Movement Gro	oup Res	sults			EB			WB	;		NB			SB	
Approach Move	-			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I		, veh/h		54	484	43	104	806	_	106	271		171	207	96
Adjusted Satura	ation Flo	ow Rate <i>(s)</i> , veh/h/ln		336	1714	1487	915	1800) 1612	1150	1718		1097	1800	1441
Queue Service				15.8	7.3	1.3	6.6	36.0	_	8.8	14.4		16.8	10.0	5.5
Cycle Queue C				54.6	7.3	1.3	13.6	36.0		18.7	14.4		31.0	10.0	5.5
Capacity (c), ve				150	2063	895	558	1084	_	318	530		262	555	444
Volume-to-Cap		atio <i>(X)</i>		0.358	0.235	0.048	0.187	0.74		0.335	0.511		0.650	0.374	0.216
Available Capa	-	. ,		249	3078	1336	828	1617		996	1543		909	1617	1294
Back of Queue	(Q), vel	h/ln (50th percentile))	1.3	2.6	0.4	1.3	13.6	5 13.1	2.5	5.9		4.5	4.3	1.9
Overflow Queu	e <i>(Q</i> 3), v	veh/ln		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Queue Storage	Ratio (RQ) (50th percentile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
Uniform Delay	(d1), s/v	eh		36.9	10.3	9.1	13.4	16.0	16.5	37.3	31.6		44.3	30.1	28.5
Incremental De				0.5	0.0	0.0	0.1	0.4	0.7	0.2	0.3		1.0	0.2	0.1
Initial Queue De	nitial Queue Delay (<i>d</i> ₂), s/veh					0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (Control Delay (<i>d</i>), s/veh					9.1	13.4	16.4	17.2	37.6	31.9		45.3	30.3	28.6
Level of Service		D	В	Α	В	В	В	D	С		D	С	С		
	Approach Delay, s/veh / LOS					В	16.6	3	В	33.5	5	С	35.4	4	D
Intersection De	lay, s/ve	eh / LOS				20).8						С		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS				2.2		В	2.4		В	2.8	_	С	3.0		С
Bicycle LOS Sc	core / LC	DS		1.0		А	1.9		А	1.1		А	1.3		А

		HCS 2	010 S	ignali	zed I	nterse	ection	n Re	sult	ts S	umma	ary				
General Inform	nation								Inte	rsect	ion Inf	ormatic	n		4 24↓	be la
Agency		Chino								ation,		0.95	///		24 L	
Analyst		R Garland		Apolyr	via Data	Mar 9	2019			a Typ		Other		- <u>-</u>		N
Jurisdiction				Time F			, 2016 eak Hou		PHF		e	0.95			w↓ F	
Intersection		City of Chino	oroido I	<u></u>							Dariad	1> 7:0	0	*		- - - ↓
		Benson Avenue/Riv		1		2024		Jeci	Ana	iysis	Period	127.0	0			F
File Name	4: a.a	Benson Riverside 2												_	<u>ין (</u> קייד ד	
Project Descrip	lion	Chino High School	Modern	Ization												
Demand Inform	nation				EB			W	/B			NB			SB	
Approach Move	ement			L	Т	R	L		Г	R	L	Т	R	L	Т	R
Demand (<i>v</i>), ve	h/h			45	460	41	99	11	37	366	121	200	51	213	224	93
Signal Informa	tion				5	-25										
Cycle, s	138.4	Reference Phase	2	-	128	•••								<u> </u>		Φ
Offset, s	0	Reference Point	End	-	Γú –		2						1	Y 2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Green		47.8	0.0	0.0		0.0	0.0			\mathbf{A}		_
Force Mode	Fixed	Simult. Gap E/W	On	Yellow Red	4.0	4.0	0.0	0.0		0.0	0.0	_	5	6	7	Y
I GIGE WIDGE	i ikeu		On	1 tou	1.0	1.0	0.0	0.0		0.0	0.0					
Timer Results				EBI	-	EBT	WB	L	WE	3T	NBL	-	NBT	SBL		SBT
Assigned Phase	е					2			6				8			4
Case Number						5.0			6.0	0			6.0			5.0
Phase Duration	, S					85.6			85.	.6			52.8			52.8
Change Period,	, (Y+Rc)	, S				5.0			5.0	0			5.0			5.0
Max Allow Head	dway <i>(N</i>	<i>1AH</i>), s				3.3			3.3	3			3.3			3.3
Queue Clearan	ueue Clearance Time (g_s) , s					72.2			53.	.5			29.0			45.9
Green Extensio	reen Extension Time (ge), s					7.7			8.2	2			2.2			2.2
Phase Call Prol	nase Call Probability					1.00			1.0	0			1.00			1.00
Max Out Proba	bility					0.12			0.0)2			0.00			0.00
Movement Gro	oup Res	sults			EB			WE	3			NB			SB	
Approach Move	-			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6		16	3	8	18	7	4	14
Adjusted Flow F	Rate (v)	, veh/h		47	484	43	104	817	7 7	765	127	264		224	236	98
		w Rate <i>(s)</i> , veh/h/ln		328	1714	1486	914	180	_	617	1126	1719		1105	1800	1449
Queue Service				18.5	9.4	1.7	8.6	47.8	85	51.5	13.4	16.6		27.4	13.8	6.6
Cycle Queue C		•		70.2	9.4	1.7	18.1	47.8	8 5	51.5	27.0	16.6		43.9	13.8	6.6
Capacity (c), ve				122	2008	871	525	105		947	326	588		298	616	496
Volume-to-Capa	acity Ra	itio (X)		0.389	0.241	0.050	0.198	0.77	5 0.	.807	0.390	0.450		0.751	0.383	0.198
Available Capa	city (Ca)	, veh/h		166	2471	1072	649	129	8 1 [.]	166	753	1239		717	1298	1045
Back of Queue	(Q), vel	n/In (50th percentile)		1.5	3.6	0.6	1.8	19.8	8 1	9.4	3.8	7.0		7.6	6.0	2.3
Overflow Queue				0.0	0.0	0.0	0.0	0.0) (0.0	0.0	0.0		0.0	0.0	0.0
		RQ) (50th percentile)	0.00	0.00	0.00	0.00	0.0	_	0.00	0.00	0.00		0.00	0.00	0.00
Uniform Delay				50.2	13.8	12.2	18.2	21.8	_	2.6	44.8	35.5		52.5	34.6	32.2
Incremental De				0.8	0.0	0.0	0.1	1.9	_	2.9	0.3	0.2		1.5	0.1	0.1
	nitial Queue Delay <i>(d</i> ₃), s/veh					0.0	0.0	0.0	_	0.0	0.0	0.0		0.0	0.0	0.0
	Control Delay (d), s/veh					12.3	18.3	23.0		25.5	45.0	35.7		54.0	34.7	32.3
	evel of Service (LOS)					В	B	C		С	D	D	Ļ	D	С	C
	Approach Delay, s/veh / LOS					В	24.1		С	;	38.7		D	42.0		D
Intersection De	lay, s/ve	eh / LOS				27	7.7							С		
Multimodal Re	sults				EB			WE	3			NB			SB	
Pedestrian LOS		/LOS		2.3	1	В	2.4		B		2.8		С	3.0	1	С
				1.0	_	A	1.9		A		1.1		A	1.4		A
	icycle LOS Score / LOS													od: 0/26/2	040 4.46	

imult. Gap E/W	ut Ave Exist N oderniz	Time F Analys No Proj zation L 80	Period sis Yea	r 2018	, 2018 eak Hou Existing	r F	ntersect Duration, Area Typ PHF Analysis	h e	0.95 Other 0.95 1> 7:0		ר קייאי אין איר קייאי אין איר קייאי אין איר		
Garland ty of Chino enson Avenue/Walnu enson Walnut 2018 I nino High School Mo eference Phase eference Point imult. Gap E/W	ut Ave Exist N oderniz	Time F Analys No Proj zation L 80	Period sis Yea .xus EB T	AM Pe r 2018	eak Hou Existing	r F	Duration, Area Typ PHF Analysis	h e	0.95 Other 0.95 1> 7:0		ר קייאי אין איר קייאי אין איר קייאי אין איר	J J J W T E S T	
Garland ty of Chino enson Avenue/Walnu enson Walnut 2018 I nino High School Mo eference Phase eference Point imult. Gap E/W	ut Ave Exist N oderniz	Time F Analys No Proj zation L 80	Period sis Yea .xus EB T	AM Pe r 2018	eak Hou Existing	Ir F I VVB	Area Typ PHF Analysis	e	Other 0.95 1> 7:0		- <u>1 4 1 4</u> 4 ↑ [₩ ^N 8 1 1 1	
ty of Chino enson Avenue/Walnu enson Walnut 2018 I nino High School Mo eference Phase eference Point imult. Gap E/W	ut Ave Exist N oderniz	Time F Analys No Proj zation L 80	Period sis Yea .xus EB T	AM Pe r 2018	eak Hou Existing	r F F WB	PHF Analysis		0.95 1> 7:0		- <u>1 4 1 4</u> 4 ↑ [
eference Phase eference Point Eference Point	ut Ave Exist N oderniz	Analys No Proj zation L 80	sis Yea .xus EB T	r 2018	Existing	WB	Analysis	Period	1> 7:0	00			
enson Walnut 2018 I nino High School Mo eference Phase eference Point E imult. Gap E/W	Exist N oderniz	No Proj zation L 80	.xus EB T	R		WB		Period				<u>1</u> 11197	
eference Phase eference Point E eference Point E	2 End On	L 80	EB T	_		1						<u></u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F 1
eference Phase eference Point E imult. Gap E/W	2 End On	L 80	Т	_	L	1						4 [\$ \$	
eference Point E imult. Gap E/W	End On	80	Т	_	L	1			ND	ļ			
eference Point E imult. Gap E/W	End On	80		_	L				NB			SB	
eference Point E imult. Gap E/W	End On		300	80		T	R	L	Т	R	L	Т	R
eference Point E imult. Gap E/W	End On				100	320	100	160	220	90	90	270	90
eference Point E imult. Gap E/W	End On												
eference Point E imult. Gap E/W	End On	_	.3	일세지							x		\mathbf{A}
imult. Gap E/W	On	-	R	` ≌∩	7					1	\$ 2	3	4
			25.0	25.0	0.0	0.0	0.0	0.0			<u> </u>		
imuit. Gap N/S	Un	Yellow Red	4.0	4.0	0.0	0.0	0.0	0.0					Ŵ
er Results				1.0	0.0	0.0	0.0	0.0		5	6	7	8
ner Results signed Phase				EBT	WB		WBT	NBI		NBT	SBL		SBT
				2			6		—	8			4
				6.0			6.0			6.0			5.0
				30.0			30.0			30.0			30.0
				5.0			5.0			5.0			5.0
-/), s				3.3			3.3		-	3.3			3.3
ueue Clearance Time (gs), s				11.2			11.4			16.0			14.6
reen Extension Time (g_e), s				2.4			2.4			2.2			2.2
reen Extension Time <i>(g₅),</i> s hase Call Probability				1.00			1.00			1.00			1.00
				0.00			0.00			0.00			0.00
te			EB			WB			NB			SB	
		1		R	1		R		1	R		1	R
	-												14
eh/h	_												95
	-												1500
													2.4
			<u> </u>										2.4
													625
(X)		0.195			0.233			0.367	0.461		0.228	0.379	0.152
		1618			1677	2999	2711	1836	2831		1737	2999	2500
		0.8	1.6	1.5	0.9	1.8	1.6	1.7	2.7		0.9	2.2	0.7
<u>, , ,</u>		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
· · · · · · · · · · · · · · · · · · ·		14.8	11.5	11.6	14.7	11.7	11.7	17.0	12.6		17.2	12.1	10.9
veh		0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2		0.1	0.1	0.0
/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/veh				11.7	14.8	11.8	11.8	17.2	12.8		17.3	12.2	10.9
evel of Service (LOS)				В	В	В	В	В	В		В	В	В
OS		12.2	2	В	12.4		В	14.3	;	В	13.0)	В
LOS				13	3.0						В		
			EB									S D	
05	-	22		R	2 /		B	2.8		0			С
	-	0.9		A	Z.4					(: N	2.8		1
hed Phase Number Duration, s Je Period, $(Y+R_c)$, s Ilow Headway (MAH), s a Clearance Time (g_s) , s Extension Time (g_e) , s Call Probability Dut Probability Dut Probability ment Group Results ach Movement hed Movement ed Flow Rate (v) , veh/h ed Saturation Flow Rate (s) , veh/h/ln a Service Time (g_s) , s Queue Clearance Time (g_c) , s bity (c) , veh/h e-to-Capacity Ratio (X) ble Capacity (c_a) , veh/h of Queue (Q_3) , veh/ln a Storage Ratio (RQ) (50th percentile) ow Queue Delay (d_2) , s/veh Queue Delay (d_3) , s/veh				s), s), s), s s s s s s s s s s s s s s	t), s 3.3 s), s 11.2 s , s -2.4 $l.$ 2.4 $l.$ 2.4 $l.$ 1.00 s -2.4 $l.$ T R $l.$ T R s -1.00 0.00 s -1.00 0.00 s 2.4 1.00 s 2.1 R s 2.12 12.2 12.2 s 3.9 4.5 4.7 s 3.9 4.5 4.7 s 9.2 4.5 4.7 $a32$ 750 683 (X) 0.195 0.275 0.284 h/h 1618 29.99 2730 $(50th percentile)$ 0.8 1.6 1.5 $l.6$ 0.1 0.1 0.1 veh 0.0 0.0 0.0 (s) 0.1 0.1 0.1	$t)$, s 3.3 3.3 $s)$, s 11.2 11.2 s 2.4 1.00 s 1.00 1.00 s 1.00 0.00 s I T R L s I_{L} T_{-} R L s I_{L} T_{-} R L s I_{-} I_{-} I_{-} I_{-} s I_{-} I_{-} I_{-} I_{-} $Rate (s), veh/h/ln$ 949 $18 \cup 0$ 1638 980 s 3.9 4.5 4.7 9.4 s 9.2 4.5 4.7 9.4 (S) 0.10 0.0 0.0 0.0 <	I), s III $III.2$ $IIII.2$ $III.2$ $IIII.2$ $IIII.2$ $IIII.2$ $IIII.2$ $IIII.2$ $IIII.2$ $IIII.2$ $IIII.2$ $IIII.2$ $IIIII.2$ $IIIII.2$ $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	II, s 3.3 3.3 3.3 s), s III.2 III.4 II , s III.2 III.4 II , s III.2 III.4 II , s III.2 III.4 $III.2$ III.4 III.4 $III.2$ III.2 III.4 $III.2$ III.2 III.4 $III.2$ III.00 III.4 $III.2$ III.00 III.00 $III.2$ III.00 III.00 $III.2$ III.00 IIII.2 $III.2$ III.2 III.2 $IIII.2$ III.2 III.2 $IIII.2$ III.2 III.2 $IIII.2$ III.2 III.2	III $III.2$ $III.4$ $III.4$ $s), s$ $III.2$ $III.4$ $III.4$ $s), s$ $III.2$ $III.4$ $III.4$ s, s $III.0$ $III.0$ $III.4$ $III.4$ s $III.0$ $III.0$ $III.0$ $III.0$ $III.0$ s $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	1), s 3.3 3.3 3.3 3.3 1	n n	0, s 3.3 3.3 3.3 3.3 3.3 3.3 3.3 $s), s$ 11.2 11.4 11.4 16.0 16.0 s, s 2.4 2.4 2.4 2.2 1.00 2.2 s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 s 1.00 1.00 0.00 s 1.00 1.00 0.00 s 1.00 1.00 0.00 s 1.00 1.00 0.00 s 1.00 0.00 0.00 <	

		HCS 2	010 3	iynan	zeu i	inter 30	SCHOL	INU	suits c	umm	ary				
General Inform	nation								Intersec	tion Inf	ormatio	on		4 24↓	tu lu
Agency	lation	Chino							Duration		0.95			1 † L	
Analyst		R Garland		Analys	sis Date	Mar 9	2018		Area Typ		Other		 		
Jurisdiction		City of Chino		Time F			eak Hou	ır	PHF		0.95		≯≯	w‡e	
Intersection		Benson Avenue/Wa	alnut Ave	<u></u>		_				Period	1> 7:0	0			۲.
Intersection				Analys		Projec		pius	Analysis	r chou					
File Name		Benson Walnut 201	8 Exist	w Proj.>	(us			I						// ▼ ↑ ↑ ►	Þ 🕈
Project Descrip	tion	Chino High School		-											
Demand Inform	nation				EB			W	R		NB			SB	
Approach Move				L	Т	R	L	Т		L	T	R	L	T	R
Demand (v), ve				80	300	80	114	32		160	230	102	90	279	90
Demand (V), ve	:II/II			80	300	00	114	32	0 100	100	230	102	90	219	90
Signal Informa	ation				- 2	-25									T
Cycle, s	60.0	Reference Phase	2	1	R		7						4	1	Φ
Offset, s	0	Reference Point	End	Croon		25.0	0.0	0.0	0.0	0.0		1	Y 2	3	
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		4.0	0.0	0.0		0.0			\rightarrow		кŤ
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0		0.0		5	6	7	Ť
	л	•								14					
Timer Results				EBI	-	EBT	WB		WBT	NBI		NBT	SBI	-	SBT
Assigned Phase	е					2			6			8			4
Case Number						6.0			6.0			6.0			5.0
Phase Duration						30.0			30.0			30.0			30.0
-	Change Period, (Y+Rc), s					5.0			5.0			5.0			5.0
	lax Allow Headway <i>(MAH</i>), s					3.3			3.3			3.3			3.3
	Queue Clearance Time (g_s) , s					11.2			12.2			16.4			15.5
Green Extensio	on Time	<i>(ge),</i> s				2.4			2.4			2.3			2.3
Phase Call Pro	bability					1.00			1.00			1.00			1.00
Max Out Proba	bility					0.00			0.00			0.00			0.00
Mayamant Cr	un Dee				ГР						ND			CD.	
Movement Gro	-	suits			EB T	R		WE T	R		NB T	R	L	SB	R
Assigned Move							L 1		16	L 3	<u> </u>	18			
		veh/h		5	2	12		6			8	10	7	4	14
Adjusted Flow I				84	206 1800	194 1638	120	229	_	168 1092	349		95	294	95
-		ow Rate <i>(s)</i> , veh/h/ln		949	4.5	4.7	980 5.5	1800 5.1) 1627 5.3	7.6	1693		1037 4.4	1800	1500
Queue Service Cycle Queue C		•		3.9 9.2	4.5	4.7	10.2	5.1	5.3	14.4	9.1 9.1		4.4	6.8 6.8	2.4 2.4
Cycle Queue C Capacity (c), ve		e fille (<i>gc)</i> , s		9.2 432	4.5 750	4.7 683	452	750	_	451	9.1 706		395	750	625
		tio (X)						<u> </u>			0.495		0.240	0.392	0.15
Volume-to-Cap Available Capa	-			0.195	0.275 2999	0.284	0.265	0.30		0.373	2822		1691	2999	250
· · · · ·		, ven/n h/ln (50th percentile)		0.8	1.6	1.5	1.1	1.8	1.6	1816	3.0		0.9	2999	250
Overflow Queue		, , ,	/	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.9	0.0	0.0
		RQ) (50th percentile)	0.00	0.00	0.00	0.00	0.0		0.00	0.00		0.00	0.00	0.0
Uniform Delay			·)	14.8	11.5	11.6	14.9	11.7		17.2	12.9		17.8	12.2	10.9
-				0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2		0.1	0.1	0.0
	ncremental Delay (d2), s/veh					0.1	0.1	0.0	0.1	0.2	0.2		0.1	0.1	0.0
	nitial Queue Delay <i>(d₃)</i> , s/veh Control Delay <i>(d</i>), s/veh					11.7	15.1	11.8		17.4	13.1		17.9	12.3	10.9
	• • • •					B	B	B	B	B	B		B	12.3 B	B
	Level of Service (LOS) Approach Delay, s/veh / LOS					B	в 12.5		B	 14.5		B	13.2		B
Intersection Dela				12.2	-		12.5 3.1	,	0	14.5			13.2 B	-	D
ILLEISECIION DE	iay, S/VE					TC.	J. I						ں 		
	Iultimodal Results										NID			0.0	
	sults				EB			WE			NB			SB	
		/LOS		2.3		В	2.4		В	2.8	1	С	2.8	ü	С

Copyright © 2012 University of Florida, All Rights Reserved.

Γ

General Information Agency Analyst Jurisdiction Intersection	Chino R Garland							Intersec	tion Inf	ormatic	on		***	₽ L
Agency Analyst Jurisdiction								intersec		ormatic	///			
Analyst Jurisdiction								Duration	h	0.95			L L L	
Jurisdiction			Analys	ia Data	Mar 0	2019				Other		 		K
					Mar 9			Area Typ PHF	e				w Î e	
Intersection	City of Chino Benson Avenue/Wa		Time F			eak Hou Without			Dariad	0.95 1> 7:0	0			<u> </u>
	Benson Avenue/wa	inul Ave	Analys	sis rear	Projec			Analysis	Period	> /:(0		5 ta	[;]
File Name	Benson Walnut 202	4 No Pr	oj.xus									5	 	1
Project Description	Chino High School	Modern	ization											
Demand Information				EB			W	3		NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h			86	324	86	120	38	7 120	162	226	91	92	280	92
Oinn al Information					1 11:									
Signal InformationCycle, s60.0	Reference Phase	2		- AR	245							x		\mathbf{V}
Offset, s 0	Reference Point	End			l Sti	7					1	Y 2	3	4
Uncoordinated Yes	Simult. Gap E/W	On	Green		25.0	0.0	0.0		0.0	_		<u>A</u>		•
	Simult. Gap E/W	On	Yellow	-	4.0	0.0	0.0		0.0	_	-	¥	-	Ψ
Force Mode Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0	0.0	0.0		5	6	1	2
Timer Results			EBL	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	L	SBT
Assigned Phase					2			6			8			4
Case Number					6.0			6.0			6.0			5.0
Phase Duration, s					30.0			30.0			30.0			30.0
Change Period, (Y+Rc)	hange Period, (Y+Rc), s							5.0			5.0			5.0
Max Allow Headway (N				3.4			3.4			3.3			3.3	
Queue Clearance Time	$ueue Clearance Time (g_s), s$				13.3			13.2			16.6			14.9
Green Extension Time	<i>(g_e),</i> s				2.8			2.8			2.3			2.3
Phase Call Probability					1.00			1.00			1.00			1.00
Max Out Probability					0.00			0.00			0.00			0.00
Movement Group Res	aults			EB			WB			NB			SB	
Approach Movement			L	T	R	L	T	R	L	Т	R	1	Т	R
Assigned Movement			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v)	veh/h		91	223	209	126	278	256	171	334		. 97	295	97
Adjusted Saturation Flo			874	1800	1639	953	1800	_	1091	1700		1051	1800	1500
Queue Service Time (g		_	4.8	4.9	5.1	6.1	6.4	6.5	7.7	8.5		4.4	6.9	2.4
Cycle Queue Clearance	•		11.3	4.9	5.1	11.2	6.4	6.5	14.6	8.5		12.9	6.9	2.4
Capacity (c), veh/h			389	750	683	436	750	678	451	708		409	750	625
Volume-to-Capacity Ra	itio <i>(X)</i>		0.233	0.297	0.306	0.289	0.370		0.378	0.471		0.237	0.393	0.155
Available Capacity (Ca),			1481	2999	2730	1628	2999		1814	2833		1723	2999	2500
Back of Queue (Q), veh			0.9	1.7	1.6	1.2	2.2	2.0	1.7	2.8		0.9	2.3	0.7
Overflow Queue (Q3), v	· · · ·		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Queue Storage Ratio (I	RQ) (50th percentile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
Uniform Delay (d1), s/ve	eh		16.0	11.7	11.7	15.4	12.1	12.1	17.3	12.7		17.4	12.2	10.9
Incremental Delay (d2),	s/veh		0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2		0.1	0.1	0.0
Initial Queue Delay (d3)	nitial Queue Delay (<i>d</i> ₃), s/veh					0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/vel		16.1	11.7	11.8	15.6	12.2	12.2	17.5	12.9		17.5	12.3	11.0	
Level of Service (LOS)		В	В	В	В	В	В	В	В		В	В	В	
Approach Delay, s/veh	/LOS		12.5	5	В	12.9)	В	14.4	L I	В	13.1	1	В
	h / LOS				13	3.2						В		
Intersection Delay, s/ve														
				 _									00	
Intersection Delay, s/ve Multimodal Results Pedestrian LOS Score	// 05		2.3	EB	В	2.4	WB	В	2.8	NB	С	2.8	SB	С

	ПС 5 2	010 S	ignali	zed I	nters	ectior	n Re	sults	Sum	ima	ary				
General Information								Intored	ction	Infe	ormatic	n		4 ↓ ☆ ↓	Je l <u>u</u>
	Chino									mit	0.95	<u>, , , , , , , , , , , , , , , , , , , </u>	- [114	
Agency			Analyz	in Data	MaxO	2010		Duratio			_		_7 _4		R.
Analyst	R Garland				Mar 9			Area T	уре		Other		_ → _*	^N .e	
Jurisdiction	City of Chino		Time F			eak Hou		PHF			0.95			8 TE	· · · · · · · · · · · · · · · · · · ·
Intersection	Benson Avenue/Wa			sis Year	2024	With Pro	oject	Analys	is Peri	od	1> 7:0	00			۲. ۲
File Name	Benson Walnut 202		-										- Ц	71	
Project Description	Chino High School	Modern	ization											⁴ † † † †	<u>P</u>
Demand Information				EB			W	'B			NB			SB	
Approach Movement			L	Т	R	L	1	F	:	L	Т	R	L	Т	R
Demand (<i>v</i>), veh/h			86	324	86	134	38	37 12	0 1	162	236	103	92	289	92
				- E											
Signal Information	Deferrer Dhave	0	-		1242								~		\mathbf{V}
Cycle, s 60.0	Reference Phase	2		R	- SA	7						1	\$ 2	3	- ↓ - 4
Offset, s 0	Reference Point	End	Green		25.0	0.0	0.0			0.0			<u> </u>		
Uncoordinated Yes	Simult. Gap E/W	On	Yellow		4.0	0.0	0.0			0.0			Y		Ý
Force Mode Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0) 0.0) (0.0		5	6	7	8
Timer Results			EBI	_	EBT	WB	L	WBT		NBL		NBT	SBI	-	SBT
Assigned Phase					2			6				8			4
Case Number					6.0			6.0				6.0			5.0
Phase Duration, s					30.0			30.0				30.0			30.0
Change Period, (Y+Ra	e). S				5.0		-	5.0	+			5.0			5.0
Max Allow Headway (I	•				3.4			3.4				3.3			3.3
	ueue Clearance Time (gs), s				13.3		\rightarrow	14.0				17.0			15.9
	treen Extension Time (g_e), s				2.9			2.9				2.4			2.4
Phase Call Probability					1.00		-	1.00	+			1.00			1.00
Max Out Probability					0.00			0.00				0.00			0.00
Movement Group Re	culte			EB			WE	2			NB			SB	
Approach Movement	Suits		L	T	R	L	T	R			T	R	L	T	R
Assigned Movement			5	2	12	1	6	16		- 3	8	18	7	4	14
Adjusted Flow Rate (v	y veh/h		91	223	209	. 141	278		_		357		97	304	97
Adjusted Saturation Fl			874	1800	1639	953	180		_	_	1694		1030	1800	1500
Queue Service Time (4.8	4.9	5.1	7.0	6.4		7.		9.3		4.6	7.1	2.4
Cycle Queue Clearand			11.3	4.9	5.1	12.0	6.4	_	15		9.3		13.9	7.1	2.4
Capacity (c), veh/h			389	750	683	436	750				706		389	750	625
Volume-to-Capacity R	atio (X)		0.233	0.297	0.306	0.323	0.37		_	85	0.505		0.249	0.406	0.155
Available Capacity (ca			1481	2999	2730	1628	299		_		2823		1676	2999	2500
Back of Queue (Q), ve			0.9	1.7	1.6	1.3	2.2		1.		3.0		1.0	2.4	0.7
Overflow Queue (Q_3) ,	, , ,		0.0	0.0	0.0	0.0	0.0		0.		0.0		0.0	0.0	0.0
Queue Storage Ratio)	0.00	0.00	0.00	0.00	0.00				0.00		0.00	0.00	0.00
Uniform Delay (<i>d</i> ₁), s/v		,	16.0	11.7	11.7	15.7	12.		_		12.9		18.1	12.3	10.9
Incremental Delay (d2)			0.1	0.1	0.1	0.2	0.1	_	0.		0.2		0.1	0.1	0.0
Initial Queue Delay (d			0.0	0.0	0.0	0.0	0.0	0.0	0.	.0	0.0		0.0	0.0	0.0
Control Delay (d), s/ve	Control Delay (<i>d</i>), s/veh				11.8	15.9	12.2	2 12.2	. 17	.7	13.1		18.2	12.4	11.0
Level of Service (LOS	· · ·				В	В	В	В	E	3	В		В	В	В
Approach Delay, s/veh	n/LOS		12.5	5	В	13.0)	В		14.6		В	13.3	3	В
Intersection Delay, s/v	eh / LOS				13	3.3							В		
Multimodal Results	(1.02		0.0	EB	D	0.1	WE		-	0.0	NB	0	0.0	SB	0
Pedestrian LOS Score			2.3 0.9		B A	2.4		B	-	2.8	_	C	2.8		C
Bicycle LUS Score / L	ycle LOS Score / LOS					1.0		Α		1.4		A	1.3		A

		HC3 2	010 3	ignan	zea	Inters	ectior	ı Ke	sun	IS 3 1	umma	ary				
General Inform	nation								Inte	rsecti	ion Inf	ormatio	n		4444	J≊ L <u>a</u>
Agency	ation	Chino								ation,	-	0.95	///		4	
		R Garland		Anolyc	via Dat	e Mar 9	2019		<u> </u>			Other		 -		
Analyst		ļ							PHF	а Туре -	;				w↓ F	*
Jurisdiction		City of Chino	h. Otra a t	Time F			eak Hou					0.95	20	-		¥
Intersection		Riverside Drive/10t	n Street	Analys	sis yea		Existing ut Proje		Ana	alysis F	Period	1> 7:0	00			_
File Name		Riverside 10th 2018	8 Exist N	lo Proj.	xus				л						¥۲ ۲ ه ۱ ا ۲	1
Project Descrip	tion	Chino High School	Modern	ization												
Demand Inform	nation				EB			W	/B			NB			SB	
Approach Move				L	Т	R	L	1	г	R		Т	R	L	T	R
Demand (v), ve				60	350		70		30	130	50	190	60	90	60	50
Signal Informa	ation				2	54		그고	L.					_		
Cycle, s	68.8	Reference Phase	2		F.		− ≓ °		517					A		хtя (
Offset, s	0	Reference Point	End	Green	35	0.3	25.0	25		0.0	0.0	_	1		3	
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		0.0	4.0	4.0		0.0	0.0	_		\rightarrow		к1
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	1.0	1.		0.0	0.0		5	6	7	
					ļ					-						
Timer Results				EBI	-	EBT	WB	L	WE	-	NBL	-	NBT	SB	_	SBT
Assigned Phase	е			5		2	1		6	-			8			4
Case Number				1.1		4.0	1.1		4.(8.0			8.0
Phase Duration				8.5		30.0	8.8		30.				30.0			30.0
Change Period				5.0		5.0	5.0	_	5.0				5.0			5.0
Max Allow Head		· ·		3.1		3.1	3.1		3.				3.4			3.4
Queue Clearan				3.6		7.6	3.9	_	19.				11.8			11.9
Green Extensio		(ge), s		0.1		3.0	0.1		3.0				1.2			1.2
Phase Call Pro				0.70		1.00	0.76	-	1.0	-			1.00			1.00
Max Out Proba	bility			0.00)	0.00	0.00)	0.0	00			0.00			0.00
Movement Gro	oup Res	sults			EB			W	3			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6		16	3	8	18	7	4	14
Adjusted Flow I	Rate <i>(v</i>)	, veh/h		63	202	198	74	52 ⁻	1 4	490		316			211	
-		ow Rate <i>(s)</i> , veh/h/ln	1	1619	1800	1739	1619	180	0 1	694		1516			1035	
Queue Service				1.6	5.5	5.6	1.9	17.	_	17.7		0.0			0.2	
Cycle Queue C				1.6	5.5	5.6	1.9	17.		17.7		9.8			9.9	
Capacity (c), ve				250	654	632	477	662	_	622		612			452	
Volume-to-Cap	acity Ra	atio <i>(X)</i>		0.253	0.309	0.313	0.155	0.78	37 0.	.787		0.516			0.466	1
Available Capa	-	. ,		638	2616		858	261	_	461		2107			1504	
· ·		h/In (50th percentile))	0.5	2.1	2.0	0.6	6.7	_	6.3		3.6			2.3	1
Overflow Queu		, , ,		0.0	0.0	0.0	0.0	0.0		0.0		0.0			0.0	1
		RQ) (50th percentile	e)	0.00	0.00	0.00	0.00	0.0	0 0	0.00		0.00			0.00	
Uniform Delay				14.7	15.7	15.7	12.3	19.4	_	19.4		17.1			16.6	1
Incremental De				0.2	0.1	0.1	0.1	0.8		0.9		0.3			0.3	
Initial Queue De				0.0	0.0	0.0	0.0	0.0	_	0.0		0.0			0.0	1
Control Delay (14.9	15.8	15.8	12.3	20.	2 2	20.2		17.3			16.9	1
Level of Service				В	В	В	В	С	_	С		В			В	
Approach Delay	. ,			15.7	7	В	19.7	<u> </u>	В	_	17.3	5	В	16.9	3	В
Intersection De	-					18	3.1							В		
Multimodal Re	sults				EB			W	3			NB			SB	
Pedestrian LOS	S Score	/LOS		2.1		В	2.1		В	3	2.8		С	2.8		С
	ore / LC	20		0.9		А	1.4		A		1.0		A	0.8		Α

General Inform	nation								Intersec	tion Inf	ormatio	on		444	J≊ L <u>⊾</u>
Agency		Chino							Duration	, h	0.95		╡_┛┛	4	
Analyst		R Garland		Analys	sis Dat	e Mar 9	, 2018		Area Typ	e	Other		4		<u>م</u>
Jurisdiction		City of Chino		Time F			eak Hou	ır	PHF		0.95		\rightarrow	w∔e	
Intersection		Riverside Drive/10t	h Street	Analys	sis Yea		Existing		Analysis	Period	1> 7:0	00	*		¥-
							Project		,					.	
File Name		Riverside 10th 2018	8 Exist v	v Proj.x	us									Υ * + + Y	* *
Project Descrip	tion	Chino High School	Modern	ization											
							_		_	_					
Demand Inform					EB		<u> </u>	W		<u> </u>	NB		<u> </u>	SB	
Approach Move				L	T	R	L	T		L	T	R	L	T	R
Demand (v), ve	h/h			73	342	30	71	83	1 180	50	233	62	90	71	61
Signal Informa	tion				1	8		ľ							
Cycle, s	68.9	Reference Phase	2			<u>– – 3</u> §	- eva						2		$\mathbf{\Phi}$
Offset, s	00.0	Reference Point	End			- N						1	Y 2	3	
Uncoordinated	Yes	Simult. Gap E/W	On	Green		25.1	25.0	0.0		0.0		7	\mathbf{A}		
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	4.0	4.0	4.0	0.0		0.0		5	6	7	
	1 incu			1.00	1.0	1.0	1.0	0.0		10.0					
Timer Results				EBI	_	EBT	WB	L	WBT	NB	L	NBT	SBI	_	SBT
Assigned Phase	e			5		2	1		6			8			4
Case Number				1.1		4.0	1.1		4.0			8.0			8.0
Phase Duration	i, s			8.9		30.1	8.8		30.0			30.0			30.0
Change Period,	, (Y+Rc)	, S		5.0		5.0	5.0		5.0			5.0			5.0
Max Allow Head				3.1		3.1	3.1		3.1			3.4			3.4
Queue Clearan				4.0		7.5	3.9	\neg	21.5			13.8			14.1
Green Extensio				0.1		3.1	0.1		3.1			1.4			1.4
Phase Call Prol		(3.7)		0.77	7	1.00	0.76	3	1.00			1.00			1.00
Max Out Proba				0.00		0.00	0.00		0.00			0.00			0.00
-	,							·							
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F	Rate <i>(v)</i>	, veh/h		77	198	194	75	553	511		363			234	
Adjusted Satura	ation Flo	ow Rate <i>(s)</i> , veh/h/ln		1619	1800	1738	1619	180	0 1661		1558			1035	
Queue Service	Time (g	(s), S		2.0	5.4	5.5	1.9	19.5	5 19.5		0.0			0.1	
Cycle Queue C	learanc	e Time <i>(g</i> ₀), s		2.0	5.4	5.5	1.9	19.5	5 19.5		11.8			12.1	
Capacity (c), ve	eh/h			240	655	633	484	654	604		625			449	
Volume-to-Capa	acity Ra	itio (X)		0.321	0.302	0.306	0.154	0.84	6 0.846		0.581			0.521	
Available Capa	city (Ca)	, veh/h		618	2611	2520	864	261 [·]	1 2409		2157			1522	
Back of Queue	(Q), vel	n/In (50th percentile))	0.7	2.0	2.0	0.6	7.5	6.9		4.2			2.6	
Overflow Queue	e <i>(Q3)</i> , v	/eh/ln		0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Queue Storage	Ratio (RQ) (50th percentile)	0.00	0.00	0.00	0.00	0.00	0.00		0.00			0.00	
Uniform Delay ((d1), s/v	eh		15.4	15.7	15.7	12.4	20.2	2 20.2		17.7			17.2	
Incremental De	lay (d2),	s/veh		0.3	0.1	0.1	0.1	1.2	1.3		0.3			0.3	
Initial Queue De	elay (d₃), s/veh		0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Control Delay (d), s/vel	า		15.6	15.8	15.8	12.5	21.4	21.5		18.0			17.5	
Level of Service	e (LOS)			В	В	В	В	С	С		В			В	
Approach Delay	y, s/veh	/ LOS		15.7	7	В	20.8	3	С	18.0)	В	17.5	5	В
Intersection Del	-					18	3.9						В		
Multimodal Re	sults				EB			WE	3		NB			SB	
Pedestrian LOS	S Score	/LOS		2.1		В	2.1		В	2.8		С	2.8		С
	ore / LC	20		0.9		А	1.4		А	1.1		Α	0.9		А

		HC3 2	010 3	ignai	zea	Inters	ectior	i Re	sui	15 51	umma	ary				
General Inform	nation								Inte	ersecti	ion Inf	ormatic	n		4,4,4,4	⊧ L
Agency	lation	Chino							<u></u>	ration,		0.95	211		4	
		R Garland		Apoly	nia Dat	e Mar 9	2019		<u> </u>			Other		 		
Analyst									PH	еа Туре Г	;				N w‡e	*
Jurisdiction		City of Chino	b. Otra a t	Time F			eak Hou		<u> </u>			0.95	20			¥
Intersection		Riverside Drive/10t	n Street	Analys	sis yea	r 2024 Projec	Without ct		Ana	alysis F	Period	1> 7:(00		. + .	
File Name		Riverside 10th 2024	4 No Pro	oj.xus					A						ዋ የቀነዖ	۴ ۲
Project Descrip	tion	Chino High School	Modern	ization												
Demand Inform	nation				EB			W	/B			NB			SB	
Approach Move	ement			L	Т	R	L	T -	гТ	R	1	Т	R	L	Т	R
Demand (v), ve				61	370		91		95	169	57	215	68	96	64	54
								- V - I								<u> </u>
Signal Informa		1	1		a			닐시	1.					_		\mathbf{A}
Cycle, s	77.2	Reference Phase	2		Ľ,	7	T∺ °		512				1	€ ,	2	к↑л
Offset, s	0	Reference Point	End	Green	3.8	0.6	32.8		5.0	0.0	0.0		1	K	3	
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		0.0	4.0	4.		0.0	0.0			\rightarrow		ĸſ
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	1.0	1.		0.0	0.0		5	6	7	
T D H							1.1.15			DT P						0.5.7
Timer Results				EBI	-	EBT	WB	L	WE	-	NBL	-	NBT	SB		SBT
Assigned Phase	e			5		2	1		6	-			8			4
Case Number				1.1		4.0	1.1		4.				8.0	<u> </u>		8.0
Phase Duration				8.8		37.8	9.4		38	_			30.0	<u> </u>		30.0
Change Period,				5.0		5.0	5.0	_	5.				5.0			5.0
Max Allow Head	• •	· ·		3.1		3.1	3.1		3.	_			3.4			3.4
Queue Clearan				3.7	_	8.1	4.5	_	29				17.0			19.4
Green Extensio		(ye), s		0.1		4.1	0.1		4.	_			1.4			1.4
Phase Call Prol	-			0.75		1.00	0.87	-	1.0	-			1.00			1.00
Max Out Proba	onity			0.00	ر ا	0.00	0.00	J	0.0	00			0.00			0.00
Movement Gro	oup Res	sults			EB			W	3			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6		16	3	8	18	7	4	14
Adjusted Flow F	Rate (v)	, veh/h		64	213	209	96	682	2 6	648		358			225	
-		ow Rate <i>(s)</i> , veh/h/ln		1619	1800	1742	1619	180	0 1	1698		1527			918	
Queue Service	Time (g	1s), S		1.7	6.0	6.1	2.5	26.	8 2	27.1		0.0			2.2	
Cycle Queue C				1.7	6.0	6.1	2.5	26.		27.1		15.0			17.4	1
Capacity <i>(c)</i> , ve	eh/h			209	766	742	534	78 [,]	1 7	737		549			365	
Volume-to-Capa	acity Ra	atio <i>(X)</i>		0.307	0.278	0.281	0.180	0.87	74 0	0.880		0.652			0.618	
Available Capa	city (Ca)	, veh/h		548	2324	2249	860	232	4 2	2193		1870			1283	
Back of Queue	(Q), vel	h/In (50th percentile))	0.6	2.3	2.2	0.8	10.	2	9.8		5.3			3.4	
Overflow Queue	e <i>(Q3)</i> , v	/eh/ln		0.0	0.0	0.0	0.0	0.0)	0.0		0.0			0.0	
Queue Storage	Ratio (RQ) (50th percentile)	0.00	0.00	0.00	0.00	0.0	0 0	0.00		0.00			0.00	
Uniform Delay ((d1), s/v	eh		16.4	14.5	14.5	10.9	20.	0 2	20.1		22.6			22.8	
Incremental De	lay (d2),	, s/veh		0.3	0.1	0.1	0.1	1.3	3	1.4		0.5			0.6	
Initial Queue De	elay (d₃)), s/veh		0.0	0.0	0.0	0.0	0.0)	0.0		0.0			0.0	
Control Delay (d), s/veł	h		16.7	14.6	14.6	11.0	21.	3 2	21.5		23.1			23.4	
Level of Service				В	В	В	В	С		С		С			С	
Approach Delay	. ,			14.8	3	В	20.7	7	C	2	23.1		С	23.4	4	С
Intersection Del					-	20).1	1						С		
Multimodal Re	sults				EB			W	3			NB			SB	
Pedestrian LOS	Score	/LOS		2.1		В	2.1		В	3	2.8		С	2.8		С
		DS		0.9		А	1.7		A	<u>م</u>	1.1		А	0.9		А

HCS 2010 S	ngnan			500101	1110		Jumm	ary				
General Information					_	Interne	tion In	lo rmoti r		J	역 학 학 수	b L
						Intersec		1/	n	- 1	4	
Agency Chino		·	NA 0	0040		Duration		0.95				R.
Analyst R Garland			e Mar 9			Area Ty	be	Other		* *	N	
Jurisdiction City of Chino	Time F			eak Hou		PHF	<u> </u>	0.95			W+E 8	
Intersection Riverside Drive/10th Stree		sis Yeai	2024	With Pro	oject	Analysis	Period	1> 7:(00			č
File Name Riverside 10th 2024 w Pro											*	
Project Description Chino High School Moder	nization										4 † #Y	7 9
Demand Information		EB			W	B		NB			SB	
Approach Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h	74	362	31	92	109	96 219	57	258	70	96	75	65
		ļ										<u> </u>
Signal Information	-	La	_ 5		빛신							\mathbf{A}
Cycle, s 91.9 Reference Phase 2	-	Γ "		"R"	7	17 I			1		3	4
Offset, s 0 Reference Point End	Green	4.4	0.4	41.3	30.	9 0.0	0.0			<u>×</u>		
Uncoordinated Yes Simult. Gap E/W On	Yellow	_	0.0	4.0	4.0		0.0			V		∇
Force Mode Fixed Simult. Gap N/S On	Red	1.0	0.0	1.0	1.0	0.0	0.0		5	6	7	8
Timer Deputto	ED		ГРТ					1	NDT	0.01		OPT
Timer Results	EBI	-	EBT	WB		WBT	NB		NBT	SBL	-	SBT
Assigned Phase Case Number	5		2	1		6			8			4
	1.1		4.0	1.1	-	4.0	-		8.0		_	8.0
Phase Duration, s	9.4		46.3	9.8		46.6	<u> </u>	_	35.9		_	35.9
Change Period, (Y+Rc), s	5.0		5.0	5.0	-	5.0			5.0			5.0
Max Allow Headway <i>(MAH)</i> , s	3.1 4.4		3.1	3.1		3.1 36.3	-		3.4 23.5			3.4 28.3
Queue Clearance Time (g_s) , s			8.9	5.0							_	
Green Extension Time (ge), s	0.1		4.3	0.1		4.3			1.6		_	1.6
Phase Call Probability	0.87		1.00	0.92	_	1.00			1.00			1.00
Max Out Probability	0.00	J	0.00	0.00)	0.00			0.00			0.00
Movement Group Results		EB			WB			NB			SB	
Approach Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement	5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	78	209	205	97	713	672		405			248	
Adjusted Saturation Flow Rate (s), veh/h/ln	1619	1800	1741	1619	1800) 1676		1531			858	
Queue Service Time (gs), s	2.4	6.8	6.9	3.0	33.6	34.3		0.0			5.1	
Cycle Queue Clearance Time (gc), s	2.4	6.8	6.9	3.0	33.6	34.3		21.5			26.3	
Capacity <i>(c)</i> , veh/h	186	809	783	543	818	761		563			344	
Volume-to-Capacity Ratio (X)	0.418	0.259	0.261	0.178	0.87	1 0.882		0.720			0.721	
Available Capacity <i>(ca)</i> , veh/h	455	1917	1854	804	1917	7 1784		1578			1048	
Back of Queue (Q), veh/In (50th percentile)	0.8	2.7	2.6	1.0	13.4	12.8		7.8			5.1	
Overflow Queue (Q3), veh/In	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Queue Storage Ratio (RQ) (50th percentile)	0.00	0.00	0.00	0.00	0.00	0.00		0.00			0.00	
Uniform Delay (d1), s/veh	20.3	16.1	16.1	12.4	23.1	23.3		27.3			28.4	
Incremental Delay (d2), s/veh	0.6	0.1	0.1	0.1	1.2	1.4		0.7			1.1	
Initial Queue Delay <i>(d</i> ₃), s/veh	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Control Delay (d), s/veh	20.9	16.2	16.2	12.5	24.3	24.8		27.9			29.5	
Level of Service (LOS)	С	В	В	В	С	С		С			С	
Approach Delay, s/veh / LOS	16.9	9	В	23.8	3	С	27.	9	С	29.5	5	С
Intersection Delay, s/veh / LOS			23	3.7						С		
Mariting a del Desculto		EB			WB			NB			SB	
Multimodal Results	• ••		P	<u> </u>	Ĩ	-	<u> </u>		0		1	<u> </u>
Pedestrian LOS Score / LOS Bicycle LOS Score / LOS	2.1 0.9		B A	2.1 1.7	_	B A	2.8 1.2		C A	2.8 0.9		C A

		HCS 2	010 S	ignali	zea i	nterse	ectior	n Res	suits S	umm	ary				
Conorol Inform	otion							_	Intorooo	tion Inf	o rm otic			4 , , , , , , , , , , , , , , , , , , ,	له ل
General Inform	hation	Ohima							Intersec		W.	on	- 1	<u>ר</u> ב ב	
Agency		Chino			·	<u>N</u>	0040		Duration	-	0.95				×.
Analyst		R Garland				Mar 9			Area Typ	e	Other	•	^		۵. ۲
Jurisdiction		City of Chino	<u> </u>	Time F			eak Hou		PHF		0.95			W + E S	
Intersection		Walnut Avenue/10th		1 -		2018	Existing		Analysis	Period	1> 7:(00			<u>۲</u>
File Name		Walnut 10th 2018 E		<u> </u>	s									11	
Project Descrip	tion	Chino High School	Modern	ization									1	↑ ↑ ↑ ↑	P 1
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), ve	h/h			30	310	60	170	35	0 80	70	60	150	40	50	20
					1								_	Ĺ.	
Signal Informa				-		_ §		<u> </u>	2	21				5	
Cycle, s	86.3	Reference Phase	2		Γ ^ε		R	2	i Sí	12 1	17 5	1		3	4
Offset, s	0	Reference Point	End	Green		3.7	25.0	3.2	1.8	25.0)		<u> </u>		
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	-	4.0	4.0	4.0		4.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	1.0	0.0	1.0		5	6	7	8
Timer Beaulte				EDI		EDT				ND		NPT	CDI		CDT
Timer Results Assigned Phase	0			EBI 5	-	EBT 2	WB		WBT 6	NBI 3	-	NBT 8	SBI 7		SBT
Case Number	C			5 2.0		4.0	2.0		4.0	2.0		8	2.0	_	4 3.0
Phase Duration				7.7		30.0	16.4		4.0 38.7	9.9		4.0 31.8	8.2		30.0
Change Period	·	6		5.0		5.0	5.0		5.0	9.9 5.0		5.0	5.0		5.0
Max Allow Head				3.1		3.1	3.1		3.1	3.1	_	3.3	3.1		3.3
Queue Clearan				3.7		9.9	11.3		10.0	5.9		11.8	4.2		3.8
Green Extensio				0.0		1.6	0.2		1.6	0.1		0.6	0.0		0.6
	e Call Probability			0.53		1.00	0.99		1.00	0.83	3	1.00	0.64		1.00
Max Out Proba				0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00
Movement Gro	-	sults			EB			WB	5		NB			SB	
Approach Move					Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I				32	200	190	179	233	220	74	221		42	53	21
		ow Rate (s), veh/h/ln		1619	1800	1662	1619	1800		1619	1561		1619	1800	1489
Queue Service		•		1.7	7.7	7.9	9.3	7.8	8.0	3.9	9.8		2.2	1.8	0.9
Cycle Queue C		e līme <i>(gc</i>), s		1.7	7.7	7.9	9.3	7.8	8.0	3.9	9.8		2.2	1.8	0.9
Capacity (c), ve				50	521	481	213	703	649	93	484		60	521	431
Volume-to-Capa				0.632	0.383	0.394	0.838	0.331		0.793	0.457		0.705	0.101	0.049
Available Capa Back of Oueue		, ven/n n/In (50th percentile)		375	2085 3.2	1925 3.0	375 3.8	2085 3.1	5 1924 2.9	375 1.7	1808 3.5		375 0.9	2085 0.7	1725 0.3
Overflow Queue		,		0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.9	0.7	0.3
		RQ) (50th percentile)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Uniform Delay			/	41.4	24.5	24.6	36.6	18.4		40.2	23.9		41.1	22.4	22.1
Incremental De				41.4	0.2	0.2	3.5	0.1	0.1	5.8	0.3		5.7	0.0	0.0
Initial Queue De				0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (46.3	24.7	24.8	40.0	18.5	-	46.0	24.2		46.8	22.5	22.1
Level of Service	-			D	C	C	D	B	B	D	C		D	C	C
Approach Delay	. ,	/LOS		26.3		C	24.6	<u> </u>	C	29.7		С	31.3		C
Intersection De							6.7			20.1			C		-
				II			-								
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS	S Score	/LOS		2.3		В	2.4		В	2.8		С	2.8		С
Bicycle LOS Sc	ore / LC	DS		0.8		А	1.0		А	1.0		А	0.7		А
0		v of Elorida, All Dights	Decemu			1100.00	10TM Str					Concert	ad: 0/26/2		

										umm	j				
General Inform	nation								Intersec	tion Inf	ormatio	on		4 → ↓	þa l <u>a</u>
Agency		Chino							Duration		0.95			_1 † ľ.	
Analyst		R Garland		Analys	sis Date	Mar 9	2018		Area Typ		Other		_* _4		
Jurisdiction		City of Chino		Time F			eak Hou	ır	PHF		0.95		**	w‡e	
Intersection		Walnut Avenue/10tl	n Street							Period	1> 7:0	າດ	*		¥
Intersection				/ that ye		Projec		pius	7 that yois	i chou		50		K fe	
File Name		Walnut 10th 2018 E	Exist w F	Proj.xus							в			ין איי ד די	* *
Project Descrip	tion	Chino High School	Modern	ization											
Demand Inform	nation				EB			W	'B		NB			SB	
Approach Move				L	T	R	L	vv ۲	1	L	T	R	L	T	R
Demand (v), ve				30	310	80	170	35		80	60	150	40	51	20
Demand (V), Ve	11/11			30	510	00	170	0.		00	00	150	40	51	20
Signal Informa	tion				1	5	§	1	ι.	21					T
Cycle, s	87.2	Reference Phase	2	1	12 1	- 2	₹L→ *	Π,			12 K		→	\	4
Offset, s	0	Reference Point	End	Croon	0.7	2.0	25.0					1	Y 2	3	
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		3.8	25.0 4.0	3.2 4.0		25.0 4.0	,		\rightarrow		t
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	1.0		1.0		5	6	7	
			n	n											
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phase	е			5		2	1		6	3		8	7		4
Case Number				2.0		4.0	2.0		4.0	2.0		4.0	2.0		3.0
Phase Duration	I, S			7.7		30.0	16.5	5	38.8	10.7	7	32.5	8.2		30.0
Change Period	, (Y+R₀)	, s		5.0		5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Head	dway <i>(N</i>	<i>IAH</i>), s		3.1		3.1	3.1		3.1	3.1		3.3	3.1		3.3
Queue Clearan	ce Time	e (g₅), s		3.7		10.6	11.4	-	10.1	6.5		11.8	4.2		3.9
Green Extensio	n Time	<i>(g_e),</i> s		0.0		1.7	0.2		1.7	0.1		0.6	0.0		0.6
Phase Call Pro	bability			0.53	3	1.00	0.99)	1.00	0.87	7	1.00	0.64	ł 📔	1.00
Max Out Proba	bility			0.00)	0.00	0.00)	0.00	0.00)	0.00	0.00)	0.00
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	-			1	T	R	L	T	R	1	Т	R	1	T	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F		veh/h		32	212	198	179	233	_	84	221		42	54	21
-		ow Rate <i>(s)</i> , veh/h/ln		1619	1800	1627	1619	180		1619	1562		1619	1800	148
Queue Service				1.7	8.3	8.6	9.4	7.9		4.5	9.8		2.2	1.9	0.9
Cycle Queue C				1.7	8.3	8.6	9.4	7.9		4.5	9.8		2.2	1.9	0.9
Capacity (c), ve		(30), 0		50	516	467	213	698	_	106	493		60	516	427
Volume-to-Cap		atio (X)		0.634	0.411	0.425	0.839	0.33		0.792	0.449		0.708	0.104	0.04
Available Capa	-	. ,		371	2064	1866	371	206		371	1791		371	2064	170
•		h/In (50th percentile))	0.7	3.4	3.2	3.8	3.2		1.9	3.5		1.0	0.8	0.3
Overflow Queu	1 91	<u>, , , , , , , , , , , , , , , , , , , </u>		0.0	0.0	0.0	0.0	0.0	_	0.0	0.0		0.0	0.0	0.0
		RQ) (50th percentile	:)	0.00	0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.00	0.0
Uniform Delay				41.8	25.2	25.3	37.0	18.8		40.2	23.8		41.5	22.9	22.
Incremental De				5.0	0.2	0.2	3.5	0.1	_	5.1	0.2		5.8	0.0	0.0
Initial Queue De				0.0	0.0	0.0	0.0	0.0	_	0.0	0.0		0.0	0.0	0.0
Control Delay (46.8	25.3	25.5	40.5	18.9		45.3	24.0		47.3	22.9	22.
Level of Service				D	С	C	D	В	B	D	С		D	С	C
Approach Delay	, ,			26.9		C	25.0		C	29.9		С	31.6		C
Intersection De							7.1						C		
	,,														
Multimodal Re	sults				EB			WE	3		NB			SB	
Pedestrian LOS	S Score	/LOS		2.3		В	2.4		В	2.8		С	2.8		С
Bicycle LOS Sc	oro /1 (20		0.9		А	1.0		А	1.0		А	0.7		Α

		HCS 2	010.3	iynan	zeu i	inter 5	ection		suits o	umm	ar y				
General Inform	nation								Intersec	tion Inf	ormatio	on	2	4741	te la
Agency		Chino							Duration		0.95			L	
Analyst		R Garland		Analys	is Date	Mar 9	2018		Area Typ		Other		_* _\$		
Jurisdiction		City of Chino		Time F		1	eak Hou	ır	PHF		0.95		→_* *	w∔e	4 →
Intersection		Walnut Avenue/10th	h Street				Without		Analysis	Period	1> 7:0	າດ	4		F
Intersection						Projec			/ (10) 515	i chou		50		K. 4.	' <u></u> '
File Name		Walnut 10th 2024 N	lo Proj.>	kus									1	ין ריי י≁ ויי	1 4
Project Descrip	tion	Chino High School	Modern	ization											
Demand Inform	nation				EB			W	В	1	NB			SB	
Approach Move				L	T	R	L	T		L	T	R	L L	Т	R
Demand (v), ve				32	335	64	204	42		79	68	170	43	54	21
Signal Informa	tion				a	5	1 2	<u> </u>	5	21				_	
Cycle, s	89.6	Reference Phase	2		F e	- è	− ⊨⇒``		s I s		12 4		\mathbf{r}		≺ †
Offset, s	0	Reference Point	End	Green	2.8	5.9	25.0	3.4		25.0)		M Z		
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	4.0		4.0				\mathbf{V}	t
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	1.0	0.0	1.0		5	6	7	<u> </u>
Timer Desult				EDI		FPT				ND		NDT	0.51		ODT
Timer Results	0			EBL	-	EBT	WB		WBT	NBI	-	NBT	SBI		SBT
Assigned Phase Case Number	5			5 2.0		2 4.0	1 2.0		6	3 2.0		8 4.0	7 2.0		4 3.0
Phase Duration				7.8	_	30.0	18.8		40.9	10.8		32.4	8.4		30.0
Change Period,				5.0		5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Head		· ·		3.1		3.1	3.1		3.1	3.1		3.3	3.1		3.3
Queue Clearan				3.8		11.0 1.9	13.6 0.2		12.1 1.9	6.5		13.9 0.7	4.5		4.1 0.7
Green Extensio Phase Call Prol		(<i>Ye)</i> , S		0.0 0.57		1.00	1.00		1.00	0.1		1.00	0.0		1.00
				0.00		0.00	0.04	_							
Max Out Proba	Dinty			0.00	,	0.00	0.02	+	0.00	0.00	,	0.00	0.00	,	0.00
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F	Rate (v)	, veh/h		34	216	204	215	282	264	83	251		45	57	22
Adjusted Satura	ation Flo	ow Rate <i>(s)</i> , veh/h/ln	1	1619	1800	1662	1619	180	0 1662	1619	1561		1619	1800	1488
Queue Service				1.8	8.8	9.0	11.6	10.0		4.5	11.9		2.5	2.1	1.0
Cycle Queue C				1.8	8.8	9.0	11.6	10.0		4.5	11.9		2.5	2.1	1.0
Capacity (c), ve				51	502	464	249	722		105	478		61	502	415
Volume-to-Capa		atio <i>(X)</i>		0.655	0.429	0.440	0.863	0.39	1 0.396	0.792	0.524		0.739	0.113	0.05
Available Capa	city (Ca)	, veh/h		361	2009	1855	361	200	9 1856	361	1742		361	2009	166 ⁻
Back of Queue	(Q), vel	h/In (50th percentile))	0.8	3.7	3.5	5.2	4.0	3.7	1.9	4.3		1.1	0.9	0.3
Overflow Queue		, , ,		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Queue Storage	Ratio (RQ) (50th percentile	;)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
Uniform Delay	(d1), s/v	eh		42.9	26.4	26.5	37.0	19.1	I 19.1	41.3	25.7		42.7	24.0	23.6
Incremental De	lay (d2),	, s/veh		5.3	0.2	0.2	11.0	0.1	0.1	5.2	0.3		6.6	0.0	0.0
Initial Queue De	elay (d₃), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/vel	h		48.2	26.7	26.8	48.0	19.2	2 19.2	46.5	26.0		49.3	24.1	23.6
Level of Service	e (LOS)			D	С	С	D	В	В	D	С		D	С	С
Approach Delay	y, s/veh	/LOS		28.3	3	С	27.3	3	С	31.1	1	С	33.2	2	С
Intersection De						28	3.8						С		
Multimodal Re					EB			WE			NB			SB	
Pedestrian LOS				2.3		В	2.4		В	2.8		С	2.8		С
Bicycle LOS Sc	ore / LC	DS		0.9		А	1.1		А	1.0		А	0.7		А

	HCS 2	010 S	ignali	zed I	nterse	ection	n Re	sults S	umm	ary				
General Information								Intersec	tion Inf	ormatic			4 744↑	له لر
	v.									1/	n	- 1	717	
Agency	Chino							Duration	-	0.95		 24		
Analyst	R Garland				e Mar 9			Area Typ	e	Other	•	^		<u>م</u>
Jurisdiction	City of Chino		Time F		_	eak Hou		PHF		0.95			W 🖡 E S	
Intersection	Walnut Avenue/10th			sis Yea	r 2024	With Pro	oject	Analysis	Period	1> 7:(00			4 4
File Name	Walnut 10th 2024 w												74	
Project Description	Chino High School	Modern	ization									٦	1 1 1 1 1	1
Demand Information	n			EB			W	В		NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h			32	335	84	204	42		91	69	170	43	55	21
Signal Information		¥		2	Ę	- 5	<u> </u>	5	2		_		K	
Cycle, s 90.6	8 Reference Phase	2		F' 4	T è	∃≓ `	. 1	i I s	12	<u>↑</u> 2 ¥		\mathbf{r}		⊾ †
Offset, s 0	Reference Point	End	Green	2.9	6.0	25.0	3.4		25.0)		<u>s</u> -		~
Uncoordinated Yes		On	Yellow		4.0	4.0	4.0	0.0	4.0		>		$\mathbf{\mathbf{V}}$	Þ
Force Mode Fixed	d Simult. Gap N/S	On	Red	1.0	1.0	1.0	1.0	0.0	1.0		5	6	7	8
Times Descrit					EDT				NE		NDT	0.51		ODT
Timer Results			EBI		EBT	WB		WBT	NBI		NBT	SBI		SBT
Assigned Phase			5		2	1		6	3		8	7		4
Case Number			2.0		4.0	2.0		4.0	2.0		4.0	2.0		3.0
Phase Duration, s			7.9		30.0	18.9		41.0	11.7		33.3	8.4		30.0
Change Period, (Y+F			5.0		5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Headway			3.1		3.1	3.1		3.1	3.1		3.3	3.1		3.3
Queue Clearance Tin			3.9		11.9	13.7		12.3	7.3		14.0	4.5		4.2
Green Extension Tim			0.0		1.9	0.2		1.9	0.1		0.7	0.0		0.7
Phase Call Probabilit	У		0.57		1.00	1.00		1.00	0.91		1.00	0.68		1.00
Max Out Probability			0.00)	0.00	0.05		0.00	0.00)	0.00	0.00	,	0.00
Movement Group R	esults			EB			WB	,		NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h		34	228	213	215	282	264	96	252		45	58	22
Adjusted Saturation F	- Iow Rate <i>(s)</i> , veh/h/ln	1	1619	1800	1629	1619	1800	1662	1619	1562		1619	1800	1487
Queue Service Time	<i>(g₅)</i> , s		1.9	9.5	9.9	11.7	10.1	10.3	5.3	12.0		2.5	2.2	1.0
Cycle Queue Clearar	nce Time <i>(g₀</i>), s		1.9	9.5	9.9	11.7	10.1	10.3	5.3	12.0		2.5	2.2	1.0
Capacity (c), veh/h			51	496	449	248	716	661	120	488		61	496	410
Volume-to-Capacity F	Ratio <i>(X)</i>		0.658	0.460	0.473	0.864	0.39	4 0.400	0.796	0.515		0.743	0.117	0.054
Available Capacity (c	a), veh/h		357	1985	1797	357	198	5 1833	357	1723		357	1985	1640
Back of Queue (Q), v	eh/In (50th percentile))	0.8	4.0	3.7	5.3	4.1	3.8	2.2	4.3		1.1	0.9	0.3
Overflow Queue (Q3)	, veh/ln		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Queue Storage Ratio	(RQ) (50th percentile	e)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
Uniform Delay (d1), s	/veh		43.4	27.2	27.3	37.5	19.5	19.6	41.3	25.5		43.2	24.6	24.1
Incremental Delay (d			5.4	0.2	0.3	11.7	0.1	0.1	4.6	0.3		6.8	0.0	0.0
Initial Queue Delay (•		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/v			48.8	27.5	27.6	49.2	19.6		45.9	25.8		50.0	24.6	24.2
Level of Service (LOS			D	С	С	D	В	В	D	С		D	С	С
	•		29.1	1	С	28.0)	С	31.4		С	33.7	7	С
Approach Delay, s/ve					29	9.4						С		
Approach Delay, s/ve														
Approach Delay, s/ve				EB			WB			NB			SB	
Approach Delay, s/ve Intersection Delay, s/	veh / LOS re / LOS		2.3		B	2.4 1.1		B	2.8		С	2.8		С

LEVEL OF SERVICE ANALYSIS CALCULATION/OUTPUT SHEETS

UNSIGNALIZED INTERSECTIONS

			CONTRO					
General Informatior	1		Site In	nformat	ion			
Analyst	R Garland		Interse				ve/Jefferso	on Ave
Agency/Co.	Chino Valle	ey USD	Jurisdic	ction		City of Ch		
Date Performed	3/9/2018	•	Analysi	is Year		2018 Exis Project	ting Witho	ut
Analysis Time Period	AM Peak F	lour				FIOJECI		
Project Description Ch	ino High School	Modernization						
East/West Street: Jeffer			North/S	outh Stre	et: Benso	n Avenue		
Intersection Orientation:	North-South		Study P	Period (hrs	s): <i>0.25</i>			
Vehicle Volumes an	nd Adjustmen	ts						
Major Street		Northbound				Southbou	ind	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)	20	430				460		10
Peak-Hour Factor, PHF	0.95	0.95	1.00		1.00	0.95		0.95
Hourly Flow Rate, HFR (veh/h)	21	452	0		0	484		10
Percent Heavy Vehicles	0				0			
Median Type				Undivide				
RT Channelized		1	0					0
Lanes	0	1	0 0		0	1		0
Configuration	LT	,				,		TR
Upstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Movement	7	8	9		10	11		12
	L	T	R		L	Т		R
Volume (veh/h)	20		40					
Peak-Hour Factor, PHF	0.95	1.00	0.95		1.00	1.00		1.00
Hourly Flow Rate, HFR (veh/h)	21	0	42		0	0		0
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		0	0		0
Configuration		LR						
Delay, Queue Length, a	nd Level of Serv	vice						
Approach	Northbound	Southbound	V	Vestboun	d	E	Eastbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT						LR	
v (veh/h)	21						63	1
C (m) (veh/h)	1080				1		423	
v/c	0.02						0.15	
95% queue length	0.06						0.13	
Control Delay (s/veh)	8.4						15.0	
· · · · ·					+			
LOS	A						B	I
Approach Delay (s/veh)							15.0	
Approach LOS							В	

HCS+TM Version 5.6

Generated: 9/26/2018 2:36 PM

		O-WAY STOP						
General Information	n		Site In	format	ion			
Analyst	R Garlan	d	Intersed	ction		Benson A	ve/Jeffers	on Ave
Agency/Co.	Chino Va		Jurisdic	tion		City of Cl	nino	
Date Performed	3/9/2018	-	Analysi	s Year		2018 Exis	sting With I	Project
Analysis Time Period	AM Peak	Hour						
Project Description Ch	nino High Schoo	Modernization	B					
East/West Street: Jeffe	rson Avenue		North/So	outh Stre	et: Bensc	on Avenue		
ntersection Orientation:	North-South		Study P	eriod (hrs	s): 0.25			
Vehicle Volumes ar	nd Adjustme	ents						
Major Street		Northbound				Southbou	Ind	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)	81	414				379		114
Peak-Hour Factor, PHF	0.95	0.95	1.00		1.00	0.95		0.95
Hourly Flow Rate, HFR (veh/h)	85	435	0		0	398		120
Percent Heavy Vehicles	0				0			
Median Type			1	Undivide	ed			
RT Channelized			0					0
Lanes	0	1	0		0	1		0
Configuration	LT							TR
Upstream Signal		0				0		
Minor Street		Eastbound				Westbou		
Movement	7	8	9		10	11	12	
	L	Т	R		L	Т		R
Volume (veh/h)	58		134					
Peak-Hour Factor, PHF	0.95	1.00	0.95		1.00	1.00		1.00
Hourly Flow Rate, HFR (veh/h)	61	0	141		0	0		0
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		0	0		0
Configuration		LR			-			-
Delay, Queue Length, a	and Level of Se	Prvice		I				
Approach	Northbound	Southbound	W	Vestboun	d		Eastbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT	· · ·	· · · · · · · · · · · · · · · · · · ·		Ť		LR	+ '-
v (veh/h)	85						202	+
· · · ·					+			
C (m) (veh/h)	1058						405	
//c	0.08	ļ					0.50	
95% queue length	0.26					_	2.70	
Control Delay (s/veh)	8.7						22.4	
LOS	А						С	
Approach Delay (s/veh)							22.4	

Copyright $\textcircled{\sc c}$ 2010 University of Florida, All Rights Reserved

HCS+TM Version 5.6

Generated: 9/26/2018 2:37 PM

			CONTRO					
General Informatio	n		Site Ir	nformat	ion			
Analyst	R Garlan	d	Interse	ction		Benson A	ve/Jeffers	on Ave
Agency/Co.	Chino Va		Jurisdie	ction		City of Cl		
Date Performed	3/9/2018	-	Analys	is Year		2024 Wit	hout Projec	ct
Analysis Time Period	AM Peak	Hour						
Project Description Cl	nino High Schoo	Modernization						
East/West Street: Jeffe	rson Avenue		North/S	outh Stre	eet: Benso	on Avenue		
Intersection Orientation:	North-South		Study F	Period (hr	s): 0.25			
Vehicle Volumes a	nd Adjustme	ents						
Major Street		Northbound				Southbou	Ind	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)	21	438				474		11
Peak-Hour Factor, PHF	0.95	0.95	1.00		1.00	0.95		0.95
Hourly Flow Rate, HFR (veh/h)	22	461	0		0	498		11
Percent Heavy Vehicles	0				0			
Median Type		8		Undivide	ed			
RT Channelized			0					0
Lanes	0	1	0		0	1		0
Configuration	LT							TR
Upstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h)	21		41					
Peak-Hour Factor, PHF	0.95	1.00	0.95		1.00	1.00		1.00
Hourly Flow Rate, HFR (veh/h)	22	0	43		0	0		0
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		0	0		0
Configuration		LR						
Delay, Queue Length, a	and Level of Se	ervice		•			-	
Approach	Northbound	Southbound	V	Vestbour	nd	E	Eastbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT			-		-	LR	
v (veh/h)	22				1		65	
C (m) (veh/h)	1066						409	+
v/c	0.02						0.16	
						-		+
95% queue length	0.06						0.56	
Control Delay (s/veh)	8.4	ļ					15.5	
LOS	A						С	
Approach Delay (s/veh)							15.5	
Approach LOS							С	

Copyright $\textcircled{\sc c}$ 2010 University of Florida, All Rights Reserved

HCS+TM Version 5.6

Generated: 9/26/2018 2:38 PM

		O-WAY STOP						
General Informatio	n		Site In	nforma	ition			
Analyst	R Garlan	d	Interse	ction		Benson A	ve/Jeffers	on Ave
Agency/Co.	Chino Va	lley USD	Jurisdio	ction		City of Cl	hino	
Date Performed	3/9/2018		Analysi	is Year		2024 Wit	h Project	
Analysis Time Period	AM Peak	Hour						
Project Description Ch	hino High Schoo	Modernization						
East/West Street: Jeffe					reet: Benso	on Avenue		
ntersection Orientation:	North-South		Study P	Period (h	irs): 0.25			
Vehicle Volumes ar	nd Adjustme	ents						
Major Street		Northbound				Southbou	und	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)	82	422				393		115
Peak-Hour Factor, PHF	0.95	0.95	1.00		1.00	0.95		0.95
Hourly Flow Rate, HFR [veh/h]	86	444	0		0	413		121
Percent Heavy Vehicles	0				0			
Median Type		u-		Undivid	led			
RT Channelized			0					0
_anes	0	1	0		0	1		0
Configuration	LT							TR
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Vovement	7	8	9		10	11		12
	L	Т	R		L	Т		R
/olume (veh/h)	59		135					
Peak-Hour Factor, PHF	0.95	1.00	0.95		1.00	1.00		1.00
Hourly Flow Rate, HFR [veh/h]	62	0	142		0	0		0
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		0	0		0
Configuration		LR						
Delay, Queue Length, a	and Level of Se	ervice				•		
Approach	Northbound	Southbound	V	Vestbou	ind	E	Eastbound	
Movement	1	4	7	8	9	10	11	12
_ane Configuration	LT			-			LR	
/ (veh/h)	86						204	
C (m) (veh/h)	1044						392	
//c	0.08					-	0.52	
	0.00					-	2.90	
95% queue length					_			<u> </u>
Control Delay (s/veh)	8.8				_		23.7	
LOS	A					_	С	
Approach Delay (s/veh)							23.7	
Approach LOS							С	

Copyright $\textcircled{\sc c}$ 2010 University of Florida, All Rights Reserved

HCS+TM Version 5.6

Generated: 9/26/2018 2:38 PM

		O-WAY STOP			MARY					
General Information				Site Information						
Analyst R Garland			Interse	ection		Benson A	Benson Ave/Monroe Street			
Agency/Co.			Jurisdi	Jurisdiction			nino			
Date Performed 3/9/2018		Analys	Analysis Year			sting Withd	out			
Analysis Time Period AM Peak Hour		Hour				Project				
Draiget Description Ch	ing Ligh Sabaa	Modernization								
Project Description Ch East/West Street: Monr		Nodernization	North/S	South Strop	t: Banco	n Avenue				
Intersection Orientation: North-South			North/South Street: Benson Avenue Study Period (hrs): 0.25							
Vehicle Volumes ar		nto	lotady i). 0.20					
Major Street		Northbound				Southbou	und			
Movement	1 2		3		4	5		6		
Novement	<u>_</u>	<u>Z</u>	R			<u>т</u>		R		
Volume (veh/h)		420	5		20	470				
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95		
Hourly Flow Rate, HFR	0	442	5		21	494		0		
(veh/h)								-		
Percent Heavy Vehicles	0				0					
Median Type		Undivided								
RT Channelized			0					0		
Lanes	0	1	0		0	1		0		
Configuration			TR		LT					
Jpstream Signal	0					0				
Minor Street	Eastbound				Westbound					
Movement	7	8	9		10	11		12		
	L	Т	R			Т		R		
Volume (veh/h)	0.05	1.00			10	1.00		20		
Peak-Hour Factor, PHF Hourly Flow Rate, HFR	0.95	1.00	0.95		0.95	1.00		0.95		
(veh/h)	0	0	0		10	0		21		
Percent Heavy Vehicles	0	0	0		0	0		0		
Percent Grade (%)		0			-	0		-		
Flared Approach		N				N				
Storage		0				0				
RT Channelized			0			Ť		0		
Lanes	0	0	0		0	0		0		
Configuration				0 0		LR		0		
Delay, Queue Length, a	nd Lovel of Se	rvice								
Approach	Northbound	Southbound		Westbound	4		Eastbound	1		
Movement	1	4	7	8	9	10	11	12		
	I	4 LT	1	o LR	3	10		12		
Lane Configuration										
v (veh/h)		21		31		_		_		
C (m) (veh/h)		1124		440	 	_				
v/c		0.02		0.07				<u> </u>		
95% queue length		0.06		0.23						
Control Delay (s/veh)		8.3		13.8						
LOS		A		В						
Approach Delay (s/veh)				13.8						
Approach LOS				В						
••										

HCS+TM Version 5.6

Generated: 9/26/2018 2:39 PM

			ii-							
General Information			Site Information							
Analyst R Garland		d	Interse	ction			Benson Ave/Monroe Stre			
Agency/Co. Chino Val		lley USD Ju		irisdiction			City of Chino			
Date Performed 3/9/2018				sis Year			2018 Existing Plus Project			
Analysis Time Period	AM Peak	Hour								
Project Description Ch		l Modernization								
East/West Street: Monn	oe Street				treet: Be		Avenue			
ntersection Orientation:	North-South		Study F	Period (hrs): 0.2	5				
Vehicle Volumes ar	nd Adjustme	nts								
Major Street	Northbound					Southbound				
Novement	1 2		3		4		5		6	
	L	Т	R		L		Т		R	
/olume (veh/h)		464	5		20		483			
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95		0.95		0.95	
lourly Flow Rate, HFR veh/h)	0	488	5		21		508		0	
Percent Heavy Vehicles	0				0					
/ledian Type			Undivided							
RT Channelized			0						0	
anes	0	1	0		0		1		0	
Configuration			TR		LT					
Jpstream Signal		0					0			
Minor Street		Eastbound	-				Westbound			
Novement	7	8	9		10		11		12	
	L	Т	R		L		Т		R	
/olume (veh/h)					10				21	
Peak-Hour Factor, PHF	0.95	1.00	0.95		0.95		1.00		0.95	
Hourly Flow Rate, HFR veh/h)	0	0	0		10		0		22	
Percent Heavy Vehicles	0	0	0 0		0		0		0	
Percent Grade (%)		0					0			
-lared Approach		N					N			
Storage		0					0			
RT Channelized			0						0	
_anes	0	0	0		0		0		0	
Configuration		-		,			LR		-	
Delay, Queue Length, a	nd Lovel of Se	nvice								
Approach	Northbound	Southbound	Westbound			Eastbound		nd		
Novement	1	4	7	8		9	10	11	12	
ane Configuration	•	LT	•	LR	-	-		<u> </u>		
/ (veh/h)		21		32						
C (m) (veh/h)		1081		413				<u> </u>		
//c		0.02		0.08				<u> </u>		
								<u> </u>		
95% queue length		0.06		0.25					_	
Control Delay (s/veh)		8.4		14.4					_	
_OS		A		В						
Approach Delay (s/veh)				14.4						
Approach LOS			В							

HCS+TM Version 5.6

Generated: 9/26/2018 2:40 PM

		O-WAY STOP							
General Information	า		Site Ir	nforma	ation				
Analyst R Garland		d	Interse	ction		Benson Ave/Monroe Stre			
Agency/Co. Chino Val		lley USD	Jurisdi	Jurisdiction		City of Chino			
Date Performed 3/9/2018			Analys	Analysis Year		2024 Without Project			
Analysis Time Period	AM Peak	Hour							
Project Description Ch		l Modernization							
East/West Street: Monr	oe Street		North/S	South St	reet: <i>Bensc</i>	on Avenue			
ntersection Orientation:	North-South		Study F	Period (h	nrs): <i>0.25</i>				
Vehicle Volumes ar	nd Adjustme	nts							
Major Street	Northbound				Southbound				
Movement	1 2		3		4	5		6	
	L	Т	R		L	Т		R	
/olume (veh/h)		428	5		20	484			
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95	
lourly Flow Rate, HFR veh/h)	0	450	5		21	509		0	
Percent Heavy Vehicles	0				0				
Median Type		Undivided							
RT Channelized			0				ľ	0	
anes	0	1	0		0	1		0	
Configuration			TR		LT				
Jpstream Signal		0				0			
Vinor Street		Eastbound	· · ·			Westbound			
Novement	7	8	9		10	11		12	
	L	Т	R		L	Т		R	
/olume (veh/h)					12	<u>†</u> ───†		24	
Peak-Hour Factor, PHF	0.95	1.00	0.95		0.95	1.00		0.95	
Hourly Flow Rate, HFR veh/h)	0	0	0		12	0		25	
Percent Heavy Vehicles	0	0	0		0	0		0	
Percent Grade (%)		0	-			0	•		
-lared Approach		N				N			
Storage		0	1			0			
RT Channelized			0			†		0	
_anes	0	0	0		0	0		0	
Configuration	+ Ť		+ <u> </u>	· · · · ·				~	
Delay, Queue Length, a	nd Lovel of So	rvice							
Approach	Northbound	Southbound	Westbound		Eastbound		4		
Novement	1	4	7	8	9	10	11	12	
ane Configuration	I	LT	'	LR				12	
/ (veh/h)		21		37				-	
· ,				-					
C (m) (veh/h)		1116		430					
//c		0.02		0.09					
95% queue length		0.06		0.28				_	
Control Delay (s/veh)		8.3		14.2					
OS		A		В					
			14.2						
Approach Delay (s/veh)				14.2			-		

HCS+TM Version 5.6

Generated: 9/26/2018 2:41 PM

		O-WAY STOP						
General Information	า		Site Ir	nforma	tion			
Analyst	R Garland	d	Interse	ction		Benson A	ve/Monro	e Street
Agency/Co.	Chino Va	lley USD	Jurisdi	ction		City of Cl	nino	
Date Performed	3/9/2018		Analys	is Year		2024 Witi	h Project	
Analysis Time Period	AM Peak	Hour						
Project Description Ch	ino High Schoo	I Modernization						
East/West Street: Monr					eet: Benso	on Avenue		
ntersection Orientation:	North-South		Study F	Period (h	rs): 0.25			
Vehicle Volumes ar	nd Adjustme	nts						
Major Street	<u>/</u>	Northbound				Southbound		
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
/olume (veh/h)		472	5		20	497		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR veh/h)	0	496	5		21	523		0
Percent Heavy Vehicles	0				0			
Median Type				Undivid	led			
RT Channelized			0					0
anes	0	1	0		0	1		0
Configuration			TR		LT			
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	ind	
Novement	7	8	9		10	11		12
	L	Т	R		L	Т		R
/olume (veh/h)					12			25
Peak-Hour Factor, PHF	0.95	1.00	0.95		0.95	1.00		0.95
Hourly Flow Rate, HFR veh/h)	0	0	0		12	0		26
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0	ŧ	
-lared Approach		N				N		
Storage		0	1			0		
RT Channelized		Ť	0			Ť		0
Lanes	0	0	0		0	0		0
Configuration		- v			•	LR		0
Delay, Queue Length, a		nvico				ER		
Approach	Northbound	Southbound	1	Westbou	nd		Eastbound	4
Novement	1	4	7	8	9	10		12
	1		1	-	9	10		12
ane Configuration		LT 21		LR				
/ (veh/h)		21		38		_		_
C (m) (veh/h)		1074		403				_
//c		0.02		0.09			L	
95% queue length		0.06		0.31				
Control Delay (s/veh)		8.4		14.9				
OS		А		В				
Approach Delay (s/veh)			14.9			•		
Approach Delay (S/Ven)				14.5				

HCS+TM Version 5.6

Generated: 9/26/2018 2:42 PM

	TW							
General Information	า		Site II	nformati	ion			
Analyst	R Garland	1	Interse	ction		Benson A		e Avenue
Agency/Co.	Chino Val		Jurisdi	ction		City of Cl		
Date Performed	3/9/2018		Analys	is Year			sting Withd	out
Analysis Time Period	AM Peak	Hour	_ ́			Project		
Project Description Ch	ing High Sabaa	Modornization						
East/West Street: Serer		NOUEINIZALION	North/S	Couth Stro	et: Benso	n Avenue		
Intersection Orientation:				Period (hrs		III AVEIIUE		
		nte	lotady i		5). 0.20			
Vehicle Volumes ar Major Street		Northbound				Southbou	und	
Movement	1	2	3		4	5		6
Novement		<u>Z</u>	R			T		R
Volume (veh/h)		400	10		10	480		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	0	421	10		10	505		0
(veh/h)	0	421	10		10	505		0
Percent Heavy Vehicles	0				0			
Median Type				Undivide	ed		<u> </u>	
RT Channelized			0					0
Lanes	0	1	0		0	1		0
Configuration			TR		LT			
Upstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h)					10			20
Peak-Hour Factor, PHF	0.95	1.00	0.95		0.95	1.00		0.95
Hourly Flow Rate, HFR (veh/h)	0	0	0		10	0		21
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		0	0		0
Configuration						LR		
Delay, Queue Length, a	nd Level of Se	rvice					-	
Approach	Northbound	Southbound	1	Nestboun	d		Eastbound	ł
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT		LR				1
v (veh/h)		10	ı	31		1		1
C (m) (veh/h)		1139	L	457	+	+		1
v/c		0.01		0.07	+	+		
95% queue length		0.03		0.22				
Control Delay (s/veh)		8.2		13.4				
LOS		A		В				
Approach Delay (s/veh)				13.4				
Approach LOS			В			1		

HCS+TM Version 5.6

Generated: 9/26/2018 2:43 PM

		O-WAY STOP	5						
General Information	n		Site Ir	nform	atic	on			
Analyst	R Garland	d	Interse	ction			Benson A	ve/Sere	ne Avenu
Agency/Co.	Chino Va	lley USD	Jurisdi	ction			City of Cl	nino	
Date Performed	3/9/2018		Analys	is Year	•		2018 Exis	sting Plus	s Project
Analysis Time Period	AM Peak	Hour							
Project Description Ch	nino High Schoo	I Modernization	•						
East/West Street: Sere	ne Avenue		North/S	South St	treet	t: Bensor	n Avenue		
Intersection Orientation:	North-South		Study Period (hrs): 0.25						
Vehicle Volumes ar	nd Adiustme	nts							
Major Street	1	Northbound				Southbound			
Movement	1	2	3		4		5	1	6
	L	Т	R			L	Т		R
Volume (veh/h)		443	10			10	493		
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR (veh/h)	0	466	10			10	518		0
Percent Heavy Vehicles	0					0			
Median Type		•		Undiv	ided		•		
RT Channelized			0						0
Lanes	0	1	0			0	1		0
Configuration			TR			LT			-
Jpstream Signal		0					0		
Vinor Street		Eastbound					Westbou	nd	
Movement	7	8	9			10	11		12
	L	T	R			L	T		R
Volume (veh/h)		-				10			21
Peak-Hour Factor, PHF	0.95	1.00	0.95			0.95	1.00		0.95
Hourly Flow Rate, HFR	0	0	0			10	0		22
Percent Heavy Vehicles	0	0	0			0	0		0
Percent Grade (%)		0				-	0		-
Flared Approach		N	1				N		
Storage	-	0					0		
RT Channelized	+		0					<u> </u>	0
Lanes	0	0	0	-+		0	0	<u> </u>	0
_anes Configuration				-+		v		<u> </u>	U
			1	1				1	
Delay, Queue Length, a	Northbound	rvice Southbound		Nestbo	لمصل		1	Jacthour	nd .
Approach					und	0		Eastbour	1
Novement	1	4	7	8		9	10	11	12
Lane Configuration		LT		LR					_
/ (veh/h)		10		32					
C (m) (veh/h)		1097		431					
//c		0.01		0.07	′				
95% queue length		0.03		0.24	!				
Control Delay (s/veh)		8.3		14.0					
LOS		A		B	_				
Approach Delay (s/veh)				14.0)				
Approach LOS			В						

HCS+TM Version 5.6

Generated: 9/26/2018 2:44 PM

			b					
General Information	n		Site Ir	nforma	ation			
Analyst	R Garlan	d	Interse	ction		Benson A	ve/Seren	e Avenu
Agency/Co.	Chino Va	lley USD	Jurisdi	ction		City of Cl	nino	
Date Performed	3/9/2018		Analys	is Year		2024 Wit	hout Proje	ect
Analysis Time Period	AM Peak	Hour						
Project Description Ch		l Modernization						
East/West Street: Sere					reet: Benso	on Avenue		
ntersection Orientation:	North-South		Study F	Period (I	nrs): 0.25			
Vehicle Volumes ar	nd Adjustme	nts						
Major Street		Northbound				Southbound		
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)		408	10		10	495		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR veh/h)	0	429	10		10	521		0
Percent Heavy Vehicles	0				0			
Vedian Type				Undivi	ded			
RT Channelized			0					0
_anes	0	1	0		0	1		0
Configuration			TR		LT			
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	Ind	
Vovement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h)					12			24
Peak-Hour Factor, PHF	0.95	1.00	0.95		0.95	1.00	0 0.9	
Hourly Flow Rate, HFR veh/h)	0	0	0		12	0	0	
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		0	0		0
Configuration		-			-	LR		~
Delay, Queue Length, a	ind Level of Se	rvice					I	
Approach	Northbound	Southbound	l l	Westbou	und		Eastbound	d
Vovement	1	4	7	8	9	10	11	12
ane Configuration	•	LT		LR	Ť		<u> </u>	
v (veh/h)		10		37				
· · · ·		1132		446		-		
C (m) (veh/h)			ļ					
		0.01		0.08			 	
95% queue length		0.03		0.27		_		
Control Delay (s/veh)		8.2		13.8				
LOS		A		В				
Approach Delay (s/veh)				13.8				
Approach LOS			B					

HCS+TM Version 5.6

Generated: 9/26/2018 2:45 PM

General Information	n		Site Ir	nforma	ition			
Analyst	R Garland	d	Interse	ction		Benson A	ve/Seren	e Avenue
Agency/Co.	Chino Va	lley USD	Jurisdi	ction		City of Cl	nino	
Date Performed	3/9/2018		Analys	is Year		2024 Wit	h Project	
Analysis Time Period	AM Peak	Hour						
Project Description Ch		l Modernization						
East/West Street: Sere					reet: Benso	n Avenue		
ntersection Orientation:	North-South		Study F	Period (h	nrs): 0.25			
Vehicle Volumes ar	nd Adjustme	nts						
Major Street		Northbound				Southbound		
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)		451	10		10	508		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR veh/h)	0	474	10		10	534		0
Percent Heavy Vehicles	0				0			
vledian Type				Undivid	ded			
RT Channelized			0					0
_anes	0	1	0		0	1		0
Configuration			TR		LT			
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Novement	7	8	9		10	11		12
	L	Т	R		L	Т		R
/olume (veh/h)					12			25
Peak-Hour Factor, PHF	0.95	1.00	0.95		0.95	1.00		0.95
Hourly Flow Rate, HFR veh/h)	0	0	0		12	0		26
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
-lared Approach		N				N		
Storage		0				0		
RT Channelized		-	0	<u> </u>				0
_anes	0	0	0		0	0		0
Configuration					-	LR		~
Delay, Queue Length, a	ind Level of Se	rvice	1			1	I	
Approach	Northbound	Southbound	١	Westbou	Ind		Eastbound	d
Vovement	1	4	7	8	9	10	11	12
_ane Configuration	•	LT	-	LR			···	+
/ (veh/h)		10		38		+		
()		1089		420				
C (m) (veh/h)					_			
		0.01		0.09			 	
95% queue length		0.03		0.30	_			
Control Delay (s/veh)		8.3		14.4		_		
LOS		A		В				
Approach Delay (s/veh)				14.4				
Approach LOS			В					

HCS+TM Version 5.6

Generated: 9/26/2018 2:46 PM

General Information	า		Site In	nformat	ion			
Analyst	R Garland		Interse				rg Ave/10th	n Street
Agency/Co.	Chino Vall		Jurisdio	ction		City of Ch		
Date Performed	3/9/2018	- ,	Analysi	is Year		2018 Existing Without		
Analysis Time Period	AM Peak I	Hour				Project		
Project Description Ch	ino High School	Modernization						
East/West Street: Getty		Modernization	North/S	outh Stre	et: 10th S	treet		
Intersection Orientation:				Period (hrs				
Vehicle Volumes ar		ute	[j-		-,			
Major Street		Northbound				Southbou	Ind	
Movement	1	2	3		4	5		6
	Ĺ	T	R		Ĺ	T T		R
Volume (veh/h)	20	430				210		5
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	21	452	0		0	221		5
(veh/h)			-			_		
Percent Heavy Vehicles	0			المناه مرا ا	0			
Median Type		-		Undivide	ed			
RT Channelized			0					0
Lanes	0	1	0		0	1		0
Configuration	LT	0				0		TR
Upstream Signal		-				-	<u> </u>	
Minor Street	7	Eastbound			10	Westbou	nd I	40
Movement	7 L	8 T	9		<u>10</u> L	11 T		12 R
Volume (veh/h)	5	1	R 5		L			ĸ
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR								
(veh/h)	5	0	5		0	0		0
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		0	0		0
Configuration		LR						
Delay, Queue Length, a	nd Level of Ser	vice						
Approach	Northbound	Southbound	V	Vestboun	d		Eastbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT	· ·	·		Ť		LR	
v (veh/h)	21				1		10	<u> </u>
C (m) (veh/h)	1354						531	
· , · ,						_		
	0.02						0.02	
95% queue length	0.05						0.06	
Control Delay (s/veh)	7.7						11.9	<u> </u>
LOS	A						В	
Approach Delay (s/veh)							11.9	
							В	

HCS+TM Version 5.6

Generated: 9/26/2018 2:47 PM

		O-WAY STOP							
General Information	n		Site Ir	nforma	atio	n			
Analyst	R Garlan	d	Interse	ction			Gettysbu	rg Ave/10tl	h Street
Agency/Co.	Chino Va	lley USD	Jurisdi	ction			City of Ch		
Date Performed	3/9/2018		Analys	is Year			2018 Exis	sting With I	Project
Analysis Time Period	AM Peak	Hour							
Project Description Ch	nino High Schoo	I Modernization	•						
East/West Street: Getty			North/S	South St	treet:	10th Str	reet		
ntersection Orientation:	North-South		Study F	Period (I	hrs):	0.25			
/ehicle Volumes ar	nd Adjustme	nts							
Major Street		Northbound				Southbound			
Novement	1	2	3			4	5		6
	L	Т	R			L	Т		R
/olume (veh/h)	20	533	11			6	219		5
Peak-Hour Factor, PHF	0.95	0.95	0.95		0).95	0.95		0.95
lourly Flow Rate, HFR veh/h)	21	561	11			6	230		5
Percent Heavy Vehicles	0					0			
vledian Type				Undivi	ided				
RT Channelized			0						0
anes	0	1	0			0	1		0
Configuration	LTR				L	TR			
Jpstream Signal		0					0		
/linor Street		Eastbound					Westbou	nd	
Novement	7	8	9			10	11		12
	L	Т	R			L	Т		R
/olume (veh/h)	5	0	5			0	0		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		C).95	0.95		0.95
lourly Flow Rate, HFR veh/h)	5	0	5			0	0		0
Percent Heavy Vehicles	0	0	0			0	0		0
Percent Grade (%)		0					0		
- lared Approach		N	1				N		
Storage		0					0		
RT Channelized			0						0
anes	0	1	0			0	1		0
Configuration		LTR	1				LTR		
Delay, Queue Length, a	nd Level of Se			1			•		
Approach	Northbound	Southbound	١	Nestbo	und		E	Eastbound	
Novement	1	4	7	8	ſ	9	10	11	12
ane Configuration	LTR	LTR		LTR		-		LTR	
(veh/h)	21	6		0				10	
C (m) (veh/h)	1344	1011						411	
() ()	0.02	0.01						0.02	
//C									
95% queue length	0.05	0.02						0.07	
Control Delay (s/veh)	7.7	8.6					ļ	14.0	
LOS	A	A						В	
Approach Delay (s/veh)								14.0	
Approach LOS					В				

HCS+TM Version 5.6

Generated: 9/26/2018 2:48 PM

			CONTRO					
General Information	n		Site Ir	nform	ation			
Analyst	R Garland	1	Interse	ction		Gettysbu	rg Ave/10tl	n Street
Agency/Co.	Chino Vall	ley USD	Jurisdie	ction		City of Cl		
Date Performed	3/9/2018		Analys	is Year		2024 Witl	hout Projec	ct 🛛
Analysis Time Period	AM Peak I	Hour						
Project Description Ch		Modernization						
East/West Street: Getty					treet: 10th	Street		
ntersection Orientation:	North-South		Study F	Period (hrs): 0.25			
Vehicle Volumes ar	nd Adjustmer	nts						
Major Street		Northbound			Southbound		Ind	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
/olume (veh/h)	23	486				225		5
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
lourly Flow Rate, HFR veh/h)	24	511	0		0	236		5
Percent Heavy Vehicles	0				0			
vledian Type		-	-	Undiv	ided			
RT Channelized			0					0
anes	0	1	0		0	1		0
Configuration	LT							TR
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Novement	7	8	9		10	11		12
	L	Т	R		L	Т		R
/olume (veh/h)	5		5					
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR veh/h)	5	0	5		0	0	0	
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
-lared Approach		N				N	<u> </u>	
Storage		0				0		
RT Channelized			0					0
_anes	0	0	0		0	0		0
Configuration		LR						
Delay, Queue Length, a	nd Level of Ser	vice						
Approach	Northbound	Southbound	\	Nestbo	und		Eastbound	
Novement	1	4	7	8	9	10	11	12
ane Configuration	LT						LR	
/ (veh/h)	24						10	
C (m) (veh/h)	1337						490	
. , . ,								
//c	0.02						0.02	
95% queue length	0.05						0.06	
Control Delay (s/veh)	7.7						12.5	
_OS	A						В	
Approach Delay (s/veh)							12.5	
Approach LOS							В	

HCS+TM Version 5.6

Generated: 9/26/2018 2:49 PM

	1 VV	O-WAY STOP	CONTR	JL 30	JIVIIV					
General Information	า		Site Ir	nform	atio	n				
Analyst	R Garlan	d	Interse	ction			Gettysbu	′g Ave∕10t	h Street	
Agency/Co.	Chino Va		Jurisdi	ction			City of Ch			
Date Performed	3/9/2018	-	Analys	is Year	•		2024 Witl	n Project		
Analysis Time Period	AM Peak	Hour								
Project Description Ch		I Modernization								
East/West Street: Getty	sburg Avenue		North/S	South St	treet	: 10th Str	reet			
ntersection Orientation:			Study F	Study Period (hrs): 0.25						
Vehicle Volumes ar	nd Adiustme	nts								
Major Street	j	Northbound					Southbou	Ind		
Vovement	1	2	3			4	5		6	
	L	Т	R			L	Т		R	
/olume (veh/h)	23	589	11			6	234		5	
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95	
lourly Flow Rate, HFR veh/h)	24	620	11			6	246		5	
Percent Heavy Vehicles	0					0				
Median Type				Undiv	ided			æ		
RT Channelized			0						0	
anes	0	1	0			0	1		0	
Configuration	LTR					LTR			-	
Jpstream Signal		0					0			
Ainor Street		Eastbound					Westbou	nd		
/lovement	7	8	9			10	11		12	
	L	T	R			L	Т		R	
/olume (veh/h)	5	0	5			0	0		0	
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95	
lourly Flow Rate, HFR veh/h)	5	0	5			0	0		0	
Percent Heavy Vehicles	0	0	0			0	0		0	
Percent Grade (%)		0					0	l		
Flared Approach		N	1				N			
Storage		0					0			
RT Channelized		Ť	0				Ť		0	
Lanes	0	1	0	 +		0	1		0	
Configuration		LTR		-+		~	LTR		~	
Delay, Queue Length, a							2/11			
Approach	Northbound	Southbound	1	Nestbo	und		۱ F	Eastbound	1	
Novement	1	4	7	8	-and	9	10	11	12	
ane Configuration	LTR	LTR	'	LTR	,	3		LTR	12	
v (veh/h)	 24	6 6		0				10		
· /				0						
C (m) (veh/h)	1326	961						370		
//c	0.02	0.01					ļ	0.03		
95% queue length	0.06	0.02						0.08		
Control Delay (s/veh)	7.8	8.8						15.0		
OS	А	А						В		
Approach Delay (s/veh)								15.0		

HCS+TM Version 5.6

Generated: 9/26/2018 2:51 PM

		O-WAY STOP							
General Information	า		Site II	nformati	on				
Analyst	R Garlan	4	Interse	ction		Jefferson	Ave/10th S	Street	
Agency/Co.	Chino Va		Jurisdi	ction		City of Ch			
Date Performed	3/9/2018		Analys	is Year			sting Witho	ut	
Analysis Time Period	AM Peak	Hour				Project			
Project Description Ch	ing Ligh Sahaa	Modernization							
East/West Street: Jeffer		Nodernization	North/S	Couth Strop	t: 10th S	troot			
ntersection Orientation:			North/South Street: 10th Street Study Period (hrs): 0.25						
Vehicle Volumes ar		nte	Jotady i). 0.20				
Major Street		Northbound				Southbou	und		
Movement	1	2	3		4			6	
Novement	· ·	<u>– </u>	R			5 T		R	
Volume (veh/h)	30	340	50		20	180		40	
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95	
Hourly Flow Rate, HFR	31	357	52		21	189		42	
(veh/h)									
Percent Heavy Vehicles	0			114-11-11	0				
Median Type				Undivide	a	1			
RT Channelized			0					0	
Lanes	0	1	0		0	1		1	
Configuration	LTR	0			LT	0		R	
Upstream Signal									
Minor Street Movement	7	Eastbound 8	9		10	Westbou	na I	12	
Movement	/ L	<u>о</u> Т	9 R		L	Т Т		R	
Volume (veh/h)	10	10	20		10	20		10	
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95	
Hourly Flow Rate, HFR									
(veh/h)	10	10	21		10	21		10	
Percent Heavy Vehicles	0	0	0		0	0		0	
Percent Grade (%)		0				0			
Flared Approach		N				N			
Storage		0				0			
RT Channelized			0					0	
Lanes	0	1	0		0	1		0	
Configuration		LTR				LTR			
Delay, Queue Length, a	nd Level of Se	rvice							
Approach	Northbound	Southbound		Nestbound	ł	E	Eastbound		
Movement	1	4	7	8	9	10	11	12	
Lane Configuration	LTR	LT		LTR	1	1	LTR	1	
v (veh/h)	31	21		41	1	1	41		
C (m) (veh/h)	1349	1161		379			489		
//c	0.02	0.02		0.11	1	1	0.08		
95% queue length	0.02	0.02		0.11			0.08	<u> </u>	
· · ·	7.7								
Control Delay (s/veh)		8.2		15.6			13.0	<u> </u>	
	A	A		C			B		
Approach Delay (s/veh)				15.6			13.0		
Approach LOS				С			В		

HCS+TM Version 5.6

Generated: 9/26/2018 2:52 PM

	IVV	O-WAY STOP	CONTR					
General Informatio	n		Site I	nformati	on			
Analyst	R Garlan	d	Interse	ction		Jefferson	Ave/10th	Street
Agency/Co.	Chino Va		Jurisdi			City of Cl		
Date Performed	3/9/2018	•	Analys	is Year		2018 Exis	sting With I	Project
Analysis Time Period	AM Peak	Hour					-	-
Project Description Cl	nino High Schoo	Modernization						
East/West Street: Jeffe	rson Avenue		North/S	South Stree	et: 10th St	treet		
ntersection Orientation:	North-South		Study F	Study Period (hrs): 0.25				
Vehicle Volumes a	nd Adiustme	ents						
Major Street	1	Northbound				Southbound		
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)	30	340	142		53	168		40
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR veh/h)	31	357	149		55	176		42
Percent Heavy Vehicles	0				0			
Median Type				Undivide	d			
RT Channelized			0					0
Lanes	0	1	0		0	1		1
Configuration	LTR				LT			R
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h)	10	22	10		53	31		23
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR (veh/h)	10	23	10		55	32		24
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	1	0		0	1		0
Configuration	<u> </u>	LTR	†		-	LTR		-
Delay, Queue Length, a	and Level of Se		8	1			1	
Approach	Northbound	Southbound	,	Nestbound	d	E	Eastbound	
Vovement	1	4	7	8	9	10	11	12
_ane Configuration	LTR	LT		LTR			LTR	1
/ (veh/h)	31	55		111	1	1	43	
C (m) (veh/h)	1364	1069		303	1	1	315	1
//c	0.02	0.05		0.37			0.14	1
95% queue length	0.07	0.16		1.62			0.47	<u> </u>
Control Delay (s/veh)	7.7	8.6		23.6			18.2	
,						+		
LOS	A	A		C			C	
Approach Delay (s/veh)				23.6			18.2	
Approach LOS				С		С		

HCS+TM Version 5.6

Generated: 9/26/2018 2:53 PM

	1 VV	O-WAY STOP	CONTRO		MARY				
General Informatio	n		Site II	nformati	ion				
Analyst	R Garlan	d	Interse	ection		Jefferson	Ave/10th	Street	
Agency/Co.	Chino Va		Jurisdi			City of Cl			
Date Performed	3/9/2018	-	Analys	is Year		2024 Wit	hout Projec	ct	
Analysis Time Period	AM Peak	Hour							
Project Description Ch	nino High Schoo	Modernization							
East/West Street: Jeffe			North/S	South Stre	et: 10th S	treet			
ntersection Orientation:	North-South		Study Period (hrs): 0.25						
Vehicle Volumes a	nd Adiustme	ents							
Major Street		Northbound				Southbound			
Vovement	1	2	3		4	5		6	
	Ĺ	T T	R		L	T		R	
/olume (veh/h)	34	384	57		21	193		43	
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95	
Hourly Flow Rate, HFR veh/h)	35	404	60		22	203		45	
Percent Heavy Vehicles	0				0				
Vedian Type		-		Undivide	d	4	•		
RT Channelized			0			ľ		0	
anes	0	1	0		0	1		1	
Configuration	LTR				LT			R	
Jpstream Signal		0				0			
Vinor Street		Eastbound				Westbou	nd		
Vovement	7	8	9		10	11		12	
	L	T	R		L	T		R	
/olume (veh/h)	11	11	21		12	24		12	
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95	
Hourly Flow Rate, HFR									
veh/h)	11	11	22		12	25		12	
Percent Heavy Vehicles	0	0	0		0	0		0	
Percent Grade (%)		0				0			
Flared Approach		N				N			
Storage		0				0			
RT Channelized			0	<u> </u>				0	
Lanes	0	1	0		0	1		0	
Configuration	Ť	LTR	† – – – –		~	LTR		~	
Delay, Queue Length, a	and Loval of Sa						Í		
Approach	Northbound	Southbound	۱ ۱	Nestboun	d	1 1	Eastbound		
Vovement	1	4	7	8	9	10	11	12	
ane Configuration	LTR	LT	<u> </u>	LTR			LTR	+ ' ²	
/ (veh/h)	35	22		49	-	+	44	+	
· · · · ·									
C (m) (veh/h)	1330	1108		339			437		
//c	0.03	0.02		0.14			0.10	 	
95% queue length	0.08	0.06		0.50			0.33		
Control Delay (s/veh)	7.8	8.3		17.4			14.2		
OS	А	А		С			В		
								-	
Approach Delay (s/veh)				17.4			14.2		

HCS+TM Version 5.6

Generated: 9/26/2018 2:54 PM

	1 00	O-WAY STOP	CONTR					
General Informatio	n		Site I	nformati	ion			
Analyst	R Garlan	d	Interse	ection		Jefferson	Ave/10th	Street
Agency/Co.	Chino Va		Jurisdi			City of Cl		
Date Performed	3/9/2018		Analys	is Year		2024 Witl	h Project	
Analysis Time Period	AM Peak	Hour						
Project Description Cl	nino High Schoo	ol Modernization	•					
East/West Street: Jeffe	rson Avenue		North/S	South Stre	et: 10th S	treet		
ntersection Orientation:	North-South		Study F	Period (hrs	s): 0.25			
Vehicle Volumes a	nd Adjustme	ents						
Major Street		Northbound				Southbou	Ind	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
/olume (veh/h)	34	384	149		54	181		43
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR [veh/h]	35	404	156		56	190		45
Percent Heavy Vehicles	0				0			
Median Type				Undivide	d			
RT Channelized			0					0
_anes	0	1	0		0	1		1
Configuration	LTR				LT			R
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
/olume (veh/h)	11	23	11		55	35		25
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR [veh/h]	11	24	11		57	36		
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	1	0		0	1		0
Configuration		LTR				LTR		
Delay, Queue Length, a	and Level of Se	ervice						
Approach	Northbound	Southbound	· ·	Nestboun	d	E	Eastbound	
Novement	1	4	7	8	9	10	11	12
_ane Configuration	LTR	LT		LTR			LTR	1
/ (veh/h)	35	56		119			46	1
C (m) (veh/h)	1344	1021		269			281	
//c	0.03	0.05		0.44	1		0.16	1
95% queue length	0.03	0.03		2.14			0.70	
· •					+	-		
Control Delay (s/veh)	7.8	8.7		28.6			20.3	
LOS	A	A		D			C	
Approach Delay (s/veh)				28.6			20.3	
Approach LOS				D		С		

HCS+TM Version 5.6 Generated: 9/26/2018 2:55 PM

		O-WAY STOP						
General Informatior	1		Site In	formati	on			
Analyst	R Garlan	d	Intersed				Ave/Catal	pa Place
Agency/Co.	Chino Va		Jurisdic	ction		City of Ch		
Date Performed	3/9/2018		Analysi	s Year			sting Witho	ut
Analysis Time Period	AM Peak	Hour				Project		
Project Description Ch	ing High Schoo	Modernization						
East/West Street: Jeffer		i Modernization	North/S	outh Stree	et: Catalp	a Place		
Intersection Orientation:				eriod (hrs				
Vehicle Volumes an		nte	otady i		,. 0.20			
Major Street		Eastbound		-		Westbou	nd	
Movement	1	2	3		4	5		6
		2	R		4	<u> </u>		R
Volume (veh/h)	5	60			L	30		5
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR								
(veh/h)	5	63	0		0	31		5
Percent Heavy Vehicles	0				0			
Median Type		-	-	Undivideo	d			
RT Channelized			0					0
Lanes	0	1	0		0	1		0
Configuration	LT							TR
Jpstream Signal		0				0		
Minor Street		Northbound				Southbou	Ind	
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h)					5			10
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR (veh/h)	0	0	0		5	0		10
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized	1		0					0
Lanes	0	0	0		0	0		0
Configuration			1 -			LR		
Delay, Queue Length, a	nd Level of Se	rvice	*					
Approach	Eastbound	Westbound	N	lorthbound	d	S	outhbound	1
Vovement	1	4	7	8	9	10	11	. 12
Lane Configuration	LT	· · · · · ·	<u> </u>	<u> </u>	Ť		LR	
-	5		┝───┤					
/ (veh/h)			├				15	
C (m) (veh/h)	1588					_	988	
//c	0.00	ļ	└─── │				0.02	
95% queue length	0.01						0.05	
Control Delay (s/veh)	7.3						8.7	
LOS	А						Α	
Approach Delay (s/veh)							8.7	•

HCS+TM Version 5.6

Generated: 9/26/2018 2:56 PM

		O-WAY STOP						
General Information	า		Site Ir	nforma	ation			
Analyst	R Garlan	d	Interse	ction		Jefferson	Ave/Catal	ba Place
Agency/Co.	Chino Va	lley USD	Jurisdi	ction		City of Ch	nino	
Date Performed	3/9/2018		Analys	is Year		2018 Exis	sting With F	Project
Analysis Time Period	AM Peak	Hour						
Project Description Ch		l Modernization						
East/West Street: Jeffer					reet: <i>Catal</i>	ba Place		
ntersection Orientation:	East-West		Study F	Period (I	nrs): <i>0.25</i>			
Vehicle Volumes ar	nd Adjustme	nts						
Major Street		Eastbound				Westbou	nd	
Vovement	1	2	3		4	5		6
	L	Т	R		L	Т		R
/olume (veh/h)	5	192				195		5
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
lourly Flow Rate, HFR veh/h)	5	202	0		0	205		5
Percent Heavy Vehicles	0				0			
vledian Type				Undivi	ded			
RT Channelized			0					0
anes	0	1	0		0	1		0
Configuration	LT							TR
Jpstream Signal		0				0		
/linor Street		Northbound				Southbou	Ind	
Novement	7	8	9		10	11		12
	L	Т	R		L	Т		R
/olume (veh/h)					5			10
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
lourly Flow Rate, HFR veh/h)	0	0	0		5	0	0 1	
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
-Iared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
anes	0	0	0		0	0		0
Configuration						LR		
Delay, Queue Length, a	nd Level of Se	rvice	-			•	•	
Approach	Eastbound	Westbound	١	lorthbo	und	s	outhbound	
Novement	1	4	7	8	9	10	11	12
ane Configuration	LT		-				LR	
/ (veh/h)	5						15	
C (m) (veh/h)	1373						736	
//c	0.00						0.02	
						-		
95% queue length	0.01						0.06	
Control Delay (s/veh)	7.6						10.0	ļ
_OS	A						A	
Approach Delay (s/veh)							10.0	
Approach LOS		1 1	A			^		

HCS+TM Version 5.6

Generated: 9/26/2018 2:57 PM

		O-WAY STOP	•••••••			••			
General Information	า		Site Ir	nform	ation				
Analyst	R Garland	1	Interse	ction			Jefferson	Ave/Catal	pa Place
Agency/Co.	Chino Val	ley USD	Jurisdi	ction			City of Ch	ino	
Date Performed	3/9/2018		Analys	is Year	•		2024 With	nour Proje	ct
Analysis Time Period	AM Peak	Hour							
Project Description Ch	nino High Schoo	l Modernization							
East/West Street: Jeffe					treet: C		Place		
ntersection Orientation:	East-West		Study F	Period (hrs): 0	.25			
/ehicle Volumes ar	nd Adjustme	nts							
Major Street		Eastbound					Westbou	nd	
Novement	1	2	3		4		5		6
	L	Т	R		L		Т		R
/olume (veh/h)	5	61					37		6
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.9	5	0.95		0.95
lourly Flow Rate, HFR veh/h)	5	64	0		0		38		6
Percent Heavy Vehicles	0				0				
/ledian Type				Undiv	ided				
RT Channelized			0						0
anes	0	1	0		0		1		0
Configuration	LT								TR
Jpstream Signal		0					0		
linor Street		Northbound					Southbou	nd	
Novement	7	8	9		10)	11		12
	L	Т	R		L		Т		R
/olume (veh/h)					5				10
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.9	5	0.95	5 0.9	
lourly Flow Rate, HFR veh/h)	0	0	0		5		0	0 10	
Percent Heavy Vehicles	0	0	0		0		0		0
Percent Grade (%)		0					0		
lared Approach		N					N		
Storage		0					0		
RT Channelized			0						0
anes	0	0	0		0		0		0
Configuration							LR		
Delay, Queue Length, a	nd Level of Se	rvice							
Approach	Eastbound	Westbound	1	Vorthbo	ound		S	outhbound	2
Approximite Approximation Appr	1	4	7	8		9	10	11	12
ane Configuration	LT	· · ·	-	Ť		-		LR	1
r (veh/h)	5							15	1
C (m) (veh/h)	1577							979	+
() ()									
	0.00							0.02	
5% queue length	0.01							0.05	
Control Delay (s/veh)	7.3							8.7	
.OS	A							Α	
Approach Delay (s/veh)								8.7	
Approach LOS								Α	

HCS+TM Version 5.6

Generated: 9/26/2018 2:58 PM

	1 44	O-WAY STOP							
General Information	n		Site Ir	nform	atio	n			
Analyst	R Garland	1	Interse	ction			Jefferson	Ave/Catal	oa Place
Agency/Co.	Chino Val	ley USD	Jurisdi	ction			City of Ch	ino	
Date Performed	3/9/2018		Analys	is Year	r		2024 With	n Project	
Analysis Time Period	AM Peak	Hour							
Project Description Ch		Modernization							
East/West Street: Jeffer						Catalpa	Place		
ntersection Orientation:	East-West		Study F	Period ((hrs):	0.25			
Vehicle Volumes ar	nd Adjustme	nts							
Major Street		Eastbound					Westbou	nd	
Movement	1	2	3			4	5		6
	L	Т	R			L	Т		R
/olume (veh/h)	5	193					202		6
Peak-Hour Factor, PHF	0.95	0.95	0.95		0).95	0.95		0.95
lourly Flow Rate, HFR veh/h)	5	203	0			0	212		6
Percent Heavy Vehicles	0					0			
/ledian Type				Undiv	vided				
RT Channelized			0						0
anes	0	1	0			0	1		0
Configuration	LT								TR
Jpstream Signal		0					0		
Ainor Street		Northbound					Southbou	nd	
Novement	7	8	9			10	11		12
	L	Т	R			L	Т		R
/olume (veh/h)						5			10
Peak-Hour Factor, PHF	0.95	0.95	0.95		0).95	0.95		0.95
Hourly Flow Rate, HFR veh/h)	0	0	0			5	0	0 1	
Percent Heavy Vehicles	0	0	0			0	0		0
Percent Grade (%)		0					0		
- lared Approach		N					N		
Storage		0					0		
RT Channelized			0						0
anes	0	0	0			0	0		0
Configuration			-			-	LR		-
Delay, Queue Length, a	nd Level of Se	rvice					•		
Approach	Eastbound	Westbound	1	Vorthbo	ound		S	outhbound	
Novement	1	4	7	8		9	10	11	12
ane Configuration	LT							LR	
v (veh/h)	5							15	
C (m) (veh/h)	1364							729	
//c	0.00							0.02	
95% queue length	0.00							0.02	
· • •									
Control Delay (s/veh)	7.6				-+			10.0	
_OS	A							В	
Approach Delay (s/veh)							ļ	10.0	
Approach LOS								В	

HCS+TM Version 5.6

Generated: 9/26/2018 2:59 PM

Garland Jino Valley J/2018 <u>A Peak Ho</u> School M nue /est Istment 1 L .95 0 0 0 0	our Modernization	Intersec Jurisdic Analysis North/Sc Study Pe 3 R 137 0.95 144 0 0 0	tion s Year	et: Parking): 0.25 4 L 165 0.95 173 0	Jefferson / City of Chi 2018 Exist Lot Entranc Westbour 5 T 117 0.95 123 	ino ting With e	
ino Valley 0/2018 <u>1 Peak Ho</u> School M nue /est istment 1 L .95 0 0	our Modernization ts Eastbound 2 T 70 0.95 73 	Jurisdic: Analysis North/Sc Study Pe 3 R 137 0.95 144 0 0 0	tion s Year buth Stree eriod (hrs): 0.25 4 L 165 0.95 173 0	City of Chi 2018 Exist Lot Entranc Westbour 5 T 117 0.95 123	ino ting With e	Project 6 R 1.00 0
0/2018 <u>1 Peak Ho</u> School M nue /est Istment 1 L .95 0 0	our Modernization ts Eastbound 2 T 70 0.95 73 	Analysis North/Sc Study Pe 3 R 137 0.95 144 0 0 0	s Year outh Stree eriod (hrs): 0.25 4 L 165 0.95 173 0	2018 Exist Lot Entranc Westbour 5 T 117 0.95 123	ting With e	6 R 1.00 0
<u>A Peak Ho</u> School M nue /est Istment 1 L .95 0 0	Modernization ts Eastbound 2 T 70 0.95 73 1	North/Sc Study Pe 3 R 137 0.95 144 0 0 0	outh Stree eriod (hrs): 0.25 4 L 165 0.95 173 0	Lot Entranc Westbour 5 T 117 0.95 123	e	6 R 1.00 0
School M nue /est stment 1 L .95 0 0	Modernization ts Eastbound 2 T 70 0.95 73 1	Study Pe 3 R 137 0.95 144 0 0 0	eriod (hrs): 0.25 4 L 165 0.95 173 0	Westbour 5 T 117 0.95 123		R 1.00 0
nue /est Istment L .95 0 0	ts Eastbound 2 T 70 0.95 73 	Study Pe 3 R 137 0.95 144 0 0 0	eriod (hrs): 0.25 4 L 165 0.95 173 0	Westbour 5 T 117 0.95 123		R 1.00 0
/est Istment L .95 0 0	Eastbound 2 T 70 0.95 73 1	Study Pe 3 R 137 0.95 144 0 0 0	eriod (hrs): 0.25 4 L 165 0.95 173 0	Westbour 5 T 117 0.95 123		R 1.00 0
1 L .95 0 0	Eastbound 2 T 70 0.95 73 1	3 R 137 0.95 144 0 0		4 L 165 0.95 173 0	5 T 117 0.95 123	nd	R 1.00 0
1 L .95 0 0	Eastbound 2 T 70 0.95 73 1	R 137 0.95 144 0 0	Undivided	L 165 0.95 173 0	5 T 117 0.95 123	nd	R 1.00 0
1 L .95 0 0	Eastbound 2 T 70 0.95 73 1	R 137 0.95 144 0 0	Undivideo	L 165 0.95 173 0	5 T 117 0.95 123		R 1.00 0
L .95 0 0	T 70 0.95 73 	R 137 0.95 144 0 0	Undivided	L 165 0.95 173 0	T 117 0.95 123		R 1.00 0
.95 0 0	70 0.95 73 1	137 0.95 144 0 0	Undivided	0.95 173 0	117 0.95 123		1.00 0
0 0	0.95 73 1	0.95 144 0 0	Undivided	0.95 173 0	0.95 123		0
0 0	73 1	144 0 0	Undivideo	173 0	123		0
0		 0 0	Undivided	0			-
-	1	0 0	Undivideo	-			
0		0 0	Undivideo	d			
0		0					
0		-					0
	0	70		1	1		0
	0	TR		L	Т		
					0		
	Northbound				Southbour	nd	
7	8	9		10	11		12
L	Т	R		L	Т		R
.95	0.95	0.95		1.00	0.95		0.95
0	0	0		0	0	0 0	
0	0	0		0	0		0
	0	•			0	•	
	N				N		
	0				0		
		0			Ť		0
0	0	0		0	0		0
-	Ť	Ť		~	l – – –		~
I of Servi							
	Westbound	NI	orthbound	4	Q7	outhboun	Ч
		1		1			12
-+		1	U	3	10	11	12
-+							
-+							_
	0.13						
1	0.43						
	8.0						
	Α						
				1			1
\mp							
		0.43 8.0 A	L 173 1365 0.13 0.43 8.0 A 	L 173 1365 0.13 0.43 8.0 A	L Image: Constraint of the second system 173 1365 1365 Image: Constraint of the second system 0.13 Image: Constraint of the second system 0.43 Image: Constraint of the second system 8.0 Image: Constraint of the second system A Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system	L Image: Constraint of the second s	L Image: Constraint of the second s

HCS+TM Version 5.6

Generated: 9/26/2018 3:00 PM

		O-WAY STOP						
General Information	า		Site Ir	nforma	ation			
Analyst	R Garlan	d	Interse	ction		Jefferson	Ave/Lot B	Entrance
Agency/Co.	Chino Va	lley USD	Jurisdi			City of Ch	nino	
Date Performed	3/9/2018		Analys	is Year		2024 Witl	h Project	
Analysis Time Period	AM Peak	Hour						
Project Description Ch		l Modernization						
East/West Street: Jeffer					reet: <i>Parkin</i>	g Lot Entran	се	
ntersection Orientation:	East-West		Study F	Period (I	nrs): 0.25			
Vehicle Volumes ar	nd Adjustme	nts						
Major Street		Eastbound				Westbou	nd	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
/olume (veh/h)	_	71	137		165	126		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		1.00
lourly Flow Rate, HFR veh/h)	0	74	144		173	132		0
Percent Heavy Vehicles	0				0			
/ledian Type				Undivi	ded			
RT Channelized			0					0
anes	0	1	0		1	1		0
Configuration			TR		L	Т		
Jpstream Signal		0				0		
Ainor Street		Northbound				Southbou	Ind	
Novement	7	8	9		10	11		12
	L	Т	R		L	Т		R
/olume (veh/h)								
Peak-Hour Factor, PHF	0.95	0.95	0.95		1.00	0.95		0.95
Hourly Flow Rate, HFR veh/h)	0	0	0		0	0	0 0	
Percent Heavy Vehicles	0	0	0		0	0	0	
Percent Grade (%)		0				0		
-Iared Approach		N				N		
Storage		0				0		
RT Channelized			0	\rightarrow				0
_anes	0	0	0		0	0		0
Configuration			1			-		
Delay, Queue Length, a	nd Level of Se	rvice		I				
Approach	Eastbound	Westbound	1	Vorthbo	und	s	outhboun	d
Novement	1	4	7	8	9	10	11	12
ane Configuration	•	L.	•	Ĕ	Ť			+
/ (veh/h)		173				-		
· ,		1364						-
C (m) (veh/h)								-
//c		0.13						
95% queue length		0.43						
Control Delay (s/veh)		8.0						
LOS		А						
Approach Delay (s/veh)								
Approach LOS								

HCS+TM Version 5.6

Generated: 9/26/2018 3:01 PM

		O-WAY STOP							
General Information	n		Site I	nformat	ion				
Analyst	R Garlan	d	Interse	ction		Jefferson	Ave/Lot I	Exit	
Agency/Co.	Chino Va	lley USD	Jurisdi	ction		City of Cl			
Date Performed	3/9/2018		Analys	is Year		2018 Exi	sting With	Project	
Analysis Time Period	AM Peak	Hour							
Project Description Ch	nino High Schoo	ol Modernization							
East/West Street: Jeffe	rson Avenue		North/S	South Stre	et: Parking	g Lot Exit			
ntersection Orientation:	East-West		Study F	Period (hr	s): 0.25				
Vehicle Volumes ar	nd Adiustme	ents							
Major Street		Eastbound				Westbou	Ind		
Novement	1	2	3		4	5		6	
	L	Т	R		L	Т		R	
/olume (veh/h)		70				215			
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		1.00	
Hourly Flow Rate, HFR veh/h)	0	73	0		0	226		0	
Percent Heavy Vehicles	0				0				
Median Type				Undivide	ed				
RT Channelized			0					0	
anes	0	1	0		0	1		0	
Configuration		Т				Т			
Jpstream Signal		0				0			
Minor Street		Northbound	•			Southbou	und		
Novement	7	8	9		10	11		12	
	L	Т	R		L	Т		R	
/olume (veh/h)	67		132		_				
Peak-Hour Factor, PHF	0.95	0.95	0.95		1.00	0.95		0.95	
Hourly Flow Rate, HFR veh/h)	70	0	138		0	0	0 0		
Percent Heavy Vehicles	0	0	0		0	0		0	
Percent Grade (%)		0				0	•		
-lared Approach		N				N			
Storage		0				0			
RT Channelized	1		0			Ť		0	
	1	0	1		0	0		0	
Configuration		Ť	R		<u> </u>			~	
Delay, Queue Length, a			1 /	I					
	Eastbound	Westbound	,	Vorthbour	nd .		outhboun	d	
Approach					Ĩ.		ir.	1	
Novement	1	4	7	8	9	10	11	12	
ane Configuration			L		R	ļ		-	
r (veh/h)			70		138				
C (m) (veh/h)			697		995				
//c			0.10		0.14				
95% queue length			0.33		0.48				
Control Delay (s/veh)			10.7		9.2				
LOS			B		A				
Approach Delay (s/veh)				9.7			1	<u> </u>	
•••••		<u> </u>							
Approach LOS				A					

HCS+TM Version 5.6

Generated: 9/26/2018 3:02 PM

		O-WAY STOP							
General Information	n		Site I	nforma	ition				
Analyst	R Garlan	d	Interse	ection		Jefferson	Ave/Lot	Exit	
Agency/Co.	Chino Va	lley USD	Jurisdi			City of Ci			
Date Performed	3/9/2018		Analys	is Year		2024 Wit	h Project		
Analysis Time Period	AM Peak	Hour							
Project Description Ch		ol Modernization							
East/West Street: Jeffe					reet: Parking	ı Lot Exit			
ntersection Orientation:	East-West		Study F	Period (h	nrs): 0.25				
Vehicle Volumes a	nd Adjustme	ents							
Major Street		Eastbound				Westbou	Ind		
Vovement	1	2	3		4	5		6	
	L	Т	R		L	Т		R	
/olume (veh/h)	_	71				224			
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		1.00	
lourly Flow Rate, HFR veh/h)	0	74	0		0	235		0	
Percent Heavy Vehicles	0				0				
/ledian Type				Undivid	ded				
RT Channelized			0					0	
anes	0	1	0		0	1		0	
Configuration		Т				Т			
Jpstream Signal		0				0			
Ainor Street		Northbound				Southbou	und		
Movement	7	8	9		10	11		12	
	L	Т	R		L	Т		R	
/olume (veh/h)	67		132						
Peak-Hour Factor, PHF	0.95	0.95	0.95		1.00	0.95		0.95	
Hourly Flow Rate, HFR veh/h)	70	0	138		0	0		0	
Percent Heavy Vehicles	0	0	0		0	0		0	
Percent Grade (%)		0				0			
- lared Approach		N				N			
Storage		0				0			
RT Channelized			0			1		0	
_anes	1	0	1		0	0		0	
Configuration	L		R		-	-		-	
Delay, Queue Length, a	and Level of Se	ervice					1		
Approach	Eastbound	Westbound	1	Northbou	und	Ģ	Southbour	nd	
Novement	1	4	7	8	9	10	11	12	
ane Configuration	•		L		R		<u> </u>		
/ (veh/h)			70		138				
, ,			-		_				
C (m) (veh/h)			687		993				
//c			0.10		0.14			_	
95% queue length			0.34		0.48			_	
Control Delay (s/veh)			10.8		9.2				
OS			В		A				
			9.8						
Approach Delay (s/veh)				9.8					

HCS+TM Version 5.6

Generated: 9/26/2018 3:03 PM

		O-WAY STOP						
General Informatior	ו		Site I	nforma	ation			
			Inters	ection			Ave/Jacar	anda
Analyst	R Garland					Place City of Ch		
Agency/Co. Date Performed	Chino Va 3/9/2018	lley USD	Jurisd				ting Witho	t
Analysis Time Period	AM Peak	Hour	Analy	sis Year		Project		u
,								
Project Description Ch	ino High Schoo	l Modernization						
East/West Street: Jeffer					reet: <i>Jacara</i>	nda Place		
ntersection Orientation:	East-West		Study	Period (ł	nrs): <i>0.25</i>			
Vehicle Volumes an	d Adjustme	nts						
Major Street		Eastbound				Westbou	nd	
Movement	1	2	3		4	5		6
(aluma (uab/b)	L 20	Т 50	R		L	Т 40		R
Volume (veh/h) Peak-Hour Factor, PHF	0.95	0.95	0.95	,	0.95	<u> </u>	<u> </u>	5 0.95
Hourly Flow Rate, HFR				<u> </u>				
(veh/h)	21	52	0		0	42		5
Percent Heavy Vehicles	0				0			
Median Type				Undivi	ded			
RT Channelized			0					0
Lanes	0	1	0		0	1		0
Configuration	LT							TR
Upstream Signal		0				0		
Minor Street		Northbound	1			Southbou	Ind	
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h) Peak-Hour Factor, PHF	0.95	0.95	0.04	-	10 0.95	0.95		10 0.95
Hourly Flow Rate, HFR			0.95	, 				
(veh/h)	0	0	0		10	0		10
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		0	0		0
Configuration						LR		
Delay, Queue Length, a	nd Level of Se	rvice						
Approach	Eastbound	Westbound		Northbo	und	S	outhbound	1
Movement	1	4	7	8	9	10	11	1
Lane Configuration	LT			1			LR	
v (veh/h)	21						20	
C (m) (veh/h)	1573			1			932	1
//c	0.01			1		1	0.02	
95% queue length	0.04						0.07	
Control Delay (s/veh)	7.3			1			8.9	
LOS	A			1		+	0:0 A	
Approach Delay (s/veh)							8.9	
Approach LOS						+	0.9 A	
Copyright @ 2010 University of Eld				HCS+TM V			A	

HCS+TM Version 5.6

Generated: 9/26/2018 3:03 PM

		O-WAY STOP								
General Informatior	า		Site Ir	nforma	tion					
Analyst	R Garland	d	Interse	ction			Ave/Jacar	anda		
Agency/Co.	Chino Va		_			Place				
Date Performed	3/9/2018		Jurisdi	is Year		City of Ch	ting With F	Project		
Analysis Time Period	AM Peak	Hour	Analys	is real		2010 EXIS	sung vviur r	Tojeci		
Project Description Ch	ino High Schoo	I Modernization								
East/West Street: Jeffer		i wodernization	North/S	South Str	eet: Jacara	nda Place				
ntersection Orientation:					rs): 0.25					
Vehicle Volumes an		nts		\\						
Major Street		Eastbound				Westbou	nd			
Movement	1	2	3		4	5		6		
	L	 	R		L	T		R		
Volume (veh/h)	20	182				205		5		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95		
Hourly Flow Rate, HFR	21	191	0		0	215		5		
(veh/h)								-		
Percent Heavy Vehicles	0			الم الم الم	0					
Median Type RT Channelized			0	Undivia	iea			0		
-		1	· ·		0			-		
	0 LT	1	0		0	1		0		
Configuration	LI	0				0		TR		
Jpstream Signal										
Minor Street	7	Northbound			10	Southbou		10		
Movement	7 L	8 T	9 R		<u>10</u> L	11 T		12 R		
Volume (veh/h)	L	I	ĸ		10	I		<u>к</u> 10		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95).95		
Hourly Flow Rate, HFR							`			
(veh/h)	0	0	0		10	0		10		
Percent Heavy Vehicles	0	0	0		0	0		0		
Percent Grade (%)		0				0				
Flared Approach		N				N				
Storage		0				0				
RT Channelized			0					0		
Lanes	0	0	0		0	0		0		
Configuration						LR				
Delay, Queue Length, a	nd Level of Se	rvice								
Approach	Eastbound	Westbound	1	Northbou	Ind	S	outhbound			
Movement	1	4	7	8	9	10	11	12		
Lane Configuration	LT						LR			
/ (veh/h)	21						20			
C (m) (veh/h)	1361						669			
//c	0.02						0.03	<u> </u>		
95% queue length	0.05						0.09	<u> </u>		
Control Delay (s/veh)	7.7	ļ			_		10.5			
LOS	A					_	В			
Approach Delay (s/veh)							10.5			
Approach LOS							В			

HCS+TM Version 5.6

Generated: 9/26/2018 3:13 PM

General Informatior	1		Site In	nformat	ion				
Analyst	R Garland	1	Interse	ction			Ave/Jacar	anda	
Agency/Co.	Chino Val					Place			
Date Performed	3/9/2018	•	Jurisdic Analysi			City of Ch	nout Projec	. 4	
Analysis Time Period	AM Peak	Hour	Analysi	is real		2024 VVIII	ioul Projec	1	
Project Description Ch	ino Hiah Schoo	I Modernization							
East/West Street: Jeffer		modernization	North/S	outh Stre	et: Jacara	nda Place			
ntersection Orientation:				Period (hrs					
Vehicle Volumes an	d Adjustme	nts		`	/				
Major Street		Eastbound				Westbou	nd		
Movement	1	2	3		4	5		6	
	L	Т	R		L	Т		R	
Volume (veh/h)	20	51				49		6	
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95	
Hourly Flow Rate, HFR	21	53	0		0	51		6	
(veh/h)			-		-			-	
Percent Heavy Vehicles	0			المناد المعال	0				
Median Type RT Channelized	+		0	Undivide	ea			0	
-								-	
Lanes	0 LT	1	0		0	1		0	
Configuration	LI	0				0		TR	
Upstream Signal							<u> </u>		
Minor Street	7	Northbound			10	Southbou		40	
Movement	7 L	8 T	9		10 L	11 T		12 R	
(-l	L	1	R			<u> </u>			
Volume (veh/h) Peak-Hour Factor, PHF	0.95	0.95	0.95		10 0.95	0.95		10 0.95	
Hourly Flow Rate, HFR									
(veh/h)	0	0	0		10	0		10	
Percent Heavy Vehicles	0	0	0		0	0		0	
Percent Grade (%)		0				0	•		
Flared Approach		N				N			
Storage		0				0			
RT Channelized	1		0	<u> </u>				0	
Lanes	0	0	0	<u> </u>	0	0		0	
Configuration					-	LR		-	
Delay, Queue Length, a	nd Level of Se	rvice	-	· · ·					
Approach	Eastbound	Westbound	N	lorthbour	nd	S	outhbound	1	
Novement	1	4	7	8	9	10	11	12	
Lane Configuration	LT	· ·	·				LR		
	21						20		
/ (veh/h)									
C (m) (veh/h)	1560						919		
//c	0.01						0.02		
95% queue length	0.04				_		0.07		
Control Delay (s/veh)	7.3						9.0		
LOS	A						А		
Approach Delay (s/veh)							9.0		
Approach LOS							A		

HCS+TM Version 5.6

Generated: 9/26/2018 3:14 PM

		O-WAY STOP							
General Informatior	า		Site Ir	nformat	ion				
Analyst	R Garland	d	Interse	ction			Ave/Jacar	anda	
Agency/Co.	Chino Va					Place City of Chino			
Date Performed	3/9/2018	•	Jurisdie	is Year					
Analysis Time Period	AM Peak	Hour	Analys	is real		2024 With Project			
Project Description Ch	ino High Schoo	I Modernization							
East/West Street: Jeffer		i wodernization	North/S	outh Stre	et: Jacara	nda Place			
Intersection Orientation:				Period (hrs					
Vehicle Volumes an	d Adjustme	nts							
Major Street		Eastbound				Westbou	nd		
Movement	1	2	3		4	5		6	
	L	T	R		L	T		R	
Volume (veh/h)	20	183				214		6	
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95	
Hourly Flow Rate, HFR	21	192	0		0	225		6	
(veh/ĥ) Porcont Hoovy Vehiclos	0		-		0				
Percent Heavy Vehicles	0			Undivide					
Median Type RT Channelized	+	1	0		50	1		0	
	0	1	0		0	1		0	
_anes Configuration	LT	1	0		0	/			
Jpstream Signal	L1	0				0		IK	
Minor Street		Northbound							
Movement	7 8		9		10	Southbou		12	
Novement	L		R		L	Т		R	
Volume (veh/h)	<u>_</u>				10	<u> </u>		10	
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95	
Hourly Flow Rate, HFR	0	0			10	0		10	
(veh/h)			0					-	
Percent Heavy Vehicles	0	0	0		0	0		0	
Percent Grade (%)		0				0			
Flared Approach		N				N			
Storage		0				0			
RT Channelized			0					0	
Lanes	0	0	0		0	0		0	
Configuration						LR			
Delay, Queue Length, a	nd Level of Se	rvice							
Approach	Eastbound	Westbound	N	lorthbour	nd	S	outhbound		
Vovement	1	4	7	8	9	10	11	12	
_ane Configuration	LT						LR		
/ (veh/h)	21						20		
C (m) (veh/h)	1349						659		
//c	0.02					+	0.03		
95% queue length	0.02					+	0.09		
	7.7					+			
Control Delay (s/veh)							10.6		
LOS Anna a h Dalau (a ha h)	A					+	B		
Approach Delay (s/veh)							10.6		
Approach LOS							В		

HCS+TM Version 5.6

Generated: 9/26/2018 3:15 PM

		O-WAY STOP							
General Informatio	n		Site I	nformati	on				
Analyst	R Garlan	d	Interse	ection			on Ave/10th	Street	
Agency/Co.	Chino Va		Jurisdi	ction		City of Chino			
Date Performed	3/9/2018		Analys	sis Year		2018 Existing Without			
Analysis Time Period	AM Peak	Hour				Project			
Project Description Ch	ino High Schoo	Modernization							
East/West Street: Mt. V		n Modernization	North/9	South Stree	t. 10th S	troot			
Intersection Orientation:			North/South Street: 10th Street Study Period (hrs): 0.25						
Vehicle Volumes ar		nte	1010103	0110 4 (1110): 0:20				
Major Street		Northbound				Southbou	ind		
Movement	1	2	3		4	5		6	
	L	<u>т</u>	R		L	T T		R	
Volume (veh/h)	10	420	0		0	200		5	
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95	
Hourly Flow Rate, HFR	10	442	0		0	210		5	
(veh/h)									
Percent Heavy Vehicles	0			I line of the first	0				
Median Type				Undivided 0				0	
RT Channelized									
Lanes	0	1	0		0	1		0	
Configuration	LTR				LTR				
Upstream Signal		0				0	-		
Minor Street		Eastbound			- 10	Westbou	nd	10	
Movement	7	8	9		10	11		12	
	L	Т	R		L	Т		R	
Volume (veh/h) Peak-Hour Factor, PHF	10 0.95	0	20 0.95		0 0.95	0		0 0.95	
Hourly Flow Rate, HFR		0.95		'			<u> </u>	0	
(veh/h)	10	0	21		0	0	0		
Percent Heavy Vehicles	0	0	0		0	0		0	
Percent Grade (%)		0	B			0			
Flared Approach		N				N			
Storage		0				0			
RT Channelized		-	0			-		0	
Lanes	0	1	0		0	1		0	
Configuration		LTR	-		-	LTR		-	
Delay, Queue Length, a	nd Level of Se			•					
Approach	Northbound	Southbound		Westbound	4		Eastbound		
Movement	1	4	7	8	9	10	11	12	
Lane Configuration	LTR	LTR	,	LTR			LTR		
v (veh/h)	10	0		0		+	31	<u> </u>	
· · · · ·		-		0					
C (m) (veh/h)	1367	1129					592		
v/c	0.01	0.00					0.05	<u> </u>	
95% queue length	0.02	0.00					0.17		
Control Delay (s/veh)	7.7	8.2					11.4		
LOS	А	A					В		
Approach Delay (s/veh)							11.4		
Approach LOS							В		
			-			· ·			

HCS+TM Version 5.6

Generated: 9/26/2018 3:16 PM

	1 • •	O-WAY STOP	001111						
General Information	n		Site Ir	nform	atic	on			
Analyst	R Garlan	d	Interse	ction			Mt. Verno	n Ave/10tl	h Street
Agency/Co.	Chino Va	lley USD	Jurisdi	ction			City of Ch	nino	
Date Performed	3/9/2018		Analys	is Year	-		2018 Exis	ting Plus l	Project
Analysis Time Period	AM Peak	Hour							
Project Description Ch		l Modernization							
East/West Street: Mt. V			North/South Street: 10th Street						
ntersection Orientation:	North-South		Study Period (hrs): 0.25						
Vehicle Volumes ar	nd Adjustme	nts							
Major Street		Northbound					Southbound		
Vovement	1	2	3		4		5		6
	L	Т	R			L	Т		R
/olume (veh/h)	10	512	11			6	215		5
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
lourly Flow Rate, HFR veh/h)	10	538	11			6	226		5
Percent Heavy Vehicles	0		- ·			0			
/ledian Type	_		Undivided			1			
RT Channelized			0						0
anes	0	1	0			0	1		0
Configuration	LTR					LTR			
Jpstream Signal		0					0		
/linor Street		Eastbound					Westbou	nd	
Novement	7	8	9			10	11		12
	L	Т	R			L	Т		R
/olume (veh/h)	10	1	20			0	0		0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
lourly Flow Rate, HFR veh/h)	10	1	21		0		о		0
Percent Heavy Vehicles	0	0	0		0		0		0
Percent Grade (%)		0					0		
- lared Approach		N					N		
Storage		0					0		
RT Channelized			0						0
anes	0	1	0			0	1		0
Configuration		LTR					LTR		
Delay, Queue Length, a	nd Level of Se	rvice					•		
Approach	Northbound	Southbound	١	Nestbo	ound		E	Eastbound	
Novement	1	4	7	8		9	10	11	12
ane Configuration	LTR	LTR		LTR	2	-	-	LTR	
(veh/h)	10	6		0				32	
C (m) (veh/h)	1349	1031		L	_			514	
/c	0.01	0.01						0.06	
									+
95% queue length	0.02	0.02						0.20	
Control Delay (s/veh)	7.7	8.5						12.5	──
OS	А	A						В	
Approach Delay (s/veh)							ļ	12.5	
Approach LOS							В		

HCS+TM Version 5.6

Generated: 9/26/2018 3:17 PM

		O-WAY STOP							
General Information	n		Site Ir	nform	atic	on			
Analyst	R Garlan	d	Interse	ction			Mt. Verno	n Ave/10tl	h Street
Agency/Co.	Chino Va		Jurisdi	ction			City of Ch	nino	
Date Performed	3/9/2018		Analys	is Year	-		2024 Without Project		
Analysis Time Period	AM Peak	Hour							
Project Description Ch	nino High Schoo	I Modernization							
East/West Street: Mt. V			North/S	South S	tree	t: 10th Str	reet		
ntersection Orientation:	North-South		Study Period (hrs): 0.25						
Vehicle Volumes ar	nd Adjustme	nts							
Major Street		Northbound					Southbou	Ind	
Vovement	1	2	3		4		5		6
	L	Т	R			L	Т		R
/olume (veh/h)	11	475	0			0	214		5
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
lourly Flow Rate, HFR veh/h)	11	500	0			0	225		5
Percent Heavy Vehicles	0		0		<u> </u>				
/ledian Type			Undivided						
RT Channelized			0						0
anes	0	1	0			0	1		0
Configuration	LTR					LTR			
Jpstream Signal		0					0		
Ainor Street		Eastbound					Westbou	nd	
Novement	7	8	9			10	11		12
	L	Т	R			L	Т		R
/olume (veh/h)	10	0	20			0	0		0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
lourly Flow Rate, HFR veh/h)	10	0	21		0		о		0
Percent Heavy Vehicles	0	0	0		0		0		0
Percent Grade (%)		0					0		
- lared Approach		N	1				N		
Storage		0					0		
RT Channelized			0						0
anes	0	1	0			0	1		0
Configuration		LTR					LTR		
Delay, Queue Length, a	nd Level of Se	rvice						•	
Approach	Northbound	Southbound	١	Nestbo	ound		E	Eastbound	
Novement	1	4	7	8		9	10	11	12
ane Configuration	LTR	LTR		LTR	2	-		LTR	
/ (veh/h)	11	0		0				31	
C (m) (veh/h)	1350	1075		⊢ Ť				550	1
//c	0.01	0.00						0.06	
95% queue length	0.02	0.00						0.18	
Control Delay (s/veh)	7.7	8.3						11.9	
OS	A	A					ļ	В	
Approach Delay (s/veh)								11.9	
Approach LOS							В		

HCS+TM Version 5.6

Generated: 9/26/2018 3:17 PM

		O-WAY STOP	001111		,				
General Information	n		Site Ir	nform	atio	n			
Analyst	R Garlan	d	Interse	ction			Mt. Verno	n Ave/10t	h Street
Agency/Co.	Chino Va	lley USD	Jurisdi	ction			City of Ch	nino	
Date Performed	3/9/2018		Analys	is Year			2024 With	n Project	
Analysis Time Period	AM Peak	Hour							
Project Description Ch	nino High Schoo	l Modernization							
East/West Street: Mt. V			North/South Street: 10th Street						
ntersection Orientation:	North-South		Study Period (hrs): 0.25						
Vehicle Volumes ar	nd Adjustme	nts							
Major Street		Northbound					Southbound		
Vovement	1	2	3		4		5		6
	L	Т	R			L	T		R
/olume (veh/h)	11	567	11			6	229		5
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
lourly Flow Rate, HFR veh/h)	11	596	11			6	241		5
Percent Heavy Vehicles	0		0		<u> </u>				
/ledian Type			Undivided						
RT Channelized			0						0
anes	0	1	0			0	1		0
Configuration	LTR					LTR			
Jpstream Signal		0					0		
linor Street		Eastbound					Westbou	nd	
Novement	7	8	9			10	11		12
	L	Т	R			L	Т		R
/olume (veh/h)	10	1	20			0	0		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95		0.95		0.95
lourly Flow Rate, HFR veh/h)	10	1	21		0		о		0
Percent Heavy Vehicles	0	0	0		0		0		0
Percent Grade (%)		0					0		
- lared Approach		N					N		
Storage		0					0		
RT Channelized			0				1		0
anes	0	1	0			0	1		0
Configuration		LTR	1				LTR		
Delay, Queue Length, a	nd Level of Se		4					I	
Approach	Northbound	Southbound	١	Nestbo	und		E	Eastbound	
/lovement	1	4	7	8		9	10	11	12
ane Configuration	LTR	LTR		LTR	,	-	··•	LTR	+
v (veh/h)	11	6		0				32	+
(ven/n) C (m) (veh/h)	1332	981		<u> </u>	-			475	
	0.01								+
//C		0.01			-+			0.07	
5% queue length	0.02	0.02						0.22	
Control Delay (s/veh)	7.7	8.7						13.1	
OS	A	A						В	
Approach Delay (s/veh)								13.1	
Approach LOS							В		

HCS+TM Version 5.6

Generated: 9/26/2018 3:18 PM

		ALL-WA	Y STOP C	ONTROL	ANALYSI	S		
General Information				Site Inform	nation			
Analyst	R Gan	land		Intersection		Park F	Place/10th Street	
Agency/Co.		Valley USD		Jurisdiction			^f Chino	
Date Performed	3/9/20			Analysis Year	r	2018 E	Existing Without	Project
Analysis Time Period	AM Pe	eak Hour						
Project ID Chino High School	Modernization							
East/West Street: Park Place				North/South S	itreet: 10th Stre	et		
Volume Adjustments	and Site C							
Approach	_	i	Eastbound			Wes		
Movement Volume (veh/h)	L 1(т 20	R 10	L 20		т 10	R
()	/	<u> </u>	20	10	20		10	80
%Thrus Left Lane								
Approach Movement			Northbound	T R		Sou	thbound	R
Volume (veh/h)	10	0	340	40	L 80		160	10
,		<u> </u>	570	70			,00	10
%Thrus Left Lane	<u> </u>			41	<u> </u>			
		tbound		tbound		nbound		nbound
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LTR		L	TR	LTR		LTR	
PHF	0.95		0.95	0.95	0.95		0.95	
Flow Rate (veh/h)	41		21	94	409		262	
% Heavy Vehicles	0		0	0	0		0	
No. Lanes		1		2		1		1
Geometry Group	4	la		5		2		2
Duration, T				0.	.25			
Saturation Headway	Adjustment	Workshe	et					
Prop. Left-Turns	0.2		1.0	0.0	0.0		0.3	
Prop. Right-Turns	0.2		0.0	0.9	0.1		0.0	
Prop. Heavy Vehicle	0.0		0.0	0.0	0.0		0.0	
	0.0	0.2	0.0	0.0	0.0	0.2	0.0	0.2
nLT-adj	_	-				-		
nRT-adj	-0.6	-0.6	-0.7	-0.7	-0.6	-0.6	-0.6	-0.6
nHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
nadj, computed	-0.1		0.5	-0.6	-0.1		0.0	
Departure Headway a		Time		-				B
nd, initial value (s)	3.20		3.20	3.20	3.20		3.20	
, initial	0.04		0.02	0.08	0.36		0.23	
id, final value (s)	5.75		6.68	5.54	4.63		4.89	
, final value	0.07		0.04	0.14	0.53		0.36	
/love-up time, m (s)	2	.0	2	.3	2	.0	2	.0
Service Time, t _s (s)	3.8		4.4	3.2	2.6		2.9	
Capacity and Level o	f Service							
	East	tbound	Wes	tbound	North	nbound	South	nbound
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	291		271	344	659		512	
Delay (s/veh)	9.15		9.65	9.17	12.65		10.57	
LOS	AAA		Α	В		В		
Approach: Delay (s/veh)		9.15		26	12	.65	-	.57
LOS		A		A	-	3		3
ntersection Delay (s/veh)					.35			
ntersection LOS					 B			
Copyright © 2010 University o		hto Door			TM Version 5.6		Generated: 9/26	0010 0.001

					ANALYSI	<u> </u>		
General Information				Site Infor	mation			
Analyst	R Garl	and		Intersection		Park I	Place/10th Street	t
Agency/Co.		Valley USD		Jurisdiction			f Chino	
Date Performed	3/9/20			Analysis Yea	r	2018	Existing Plus Pro	oject
Analysis Time Period	-	ak Hour						
Project ID Chino High School				-				
East/West Street: Park Place				North/South S	Street: 10th Stre	et		
/olume Adjustments	and Site C							
Approach			Eastbound			We	Westbound	
Movement			T 11	R 10	L 21		т 11	R
/olume (veh/h) %Thrus Left Lane	20	/	11	11 10				80
		Northb						
Approach Movement	L		lorthbound	R	L	501	thbound	R
/olume (veh/h)			454	32	41		181	10
%Thrus Left Lane	_ <u></u>	·	,					,0
	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		
	East	bound	Wes	stbound	North	1bound	South	nbound
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LTR		L	TR	LTR		LTR	
PHF	0.95		0.95	0.95	0.95		0.95	
Flow Rate (veh/h)	42		22	95	520		243	
% Heavy Vehicles	0		0	0	0		0	
No. Lanes		1		2		1		1
Geometry Group	4	а		5		2		2
Duration, T			-	0	.25			
Saturation Headway	Adjustment	Workshe	et					
Prop. Left-Turns	0.5		1.0	0.0	0.0		0.2	
Prop. Right-Turns	0.2		0.0	0.0	0.0		0.0	
	-			-	_		-	
Prop. Heavy Vehicle	0.0		0.0	0.0	0.0		0.0	
nLT-adj	0.2	0.2	0.5	0.5	0.2	0.2	0.2	0.2
nRT-adj	-0.6	-0.6	-0.7	-0.7	-0.6	-0.6	-0.6	-0.6
nHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
nadj, computed	-0.0		0.5	-0.6	-0.0		0.0	
Departure Headway a	and Service	Time		-		•		•
nd, initial value (s)	3.20		3.20	3.20	3.20		3.20	1
κ, initial	0.04		0.02	0.08	0.46		0.22	
nd, final value (s)	6.07		6.92	5.79	4.67		5.04	
(, final value	0.07		0.02	0.15	0.67	1	0.34	<u> </u>
Move-up time, m (s)		.0		2.3		.0	_	.0
Service Time, t _s (s)	4.1		4.6	3.5	2.7	1	3.0	Î.
<u> </u>			J 7.0	5.5	L 2.1		0.0	
Capacity and Level o								
	East	bound	Wes	stbound	North	bound	South	nbound
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	292		272	345	758		493	
Delay (s/veh)	9.53		9.93	9.53	16.78	<u> </u>	10.61	<u> </u>
					-	+	-	
OS	AAA			A	С		В	
Approach: Delay (s/veh)	9.53 9.0			.60		.78	10	.61
LOS		Α		A C				3
ntersection Delay (s/veh)			±	13	3.92		-	
					B			

General Information				Site Inform	mation				
	•			-	mation	Derte	Place/10th Street		
Analyst	R Garl			Intersection Jurisdiction			Place/10th Street f Chino		
Agency/Co. Date Performed	Chino 3/9/20	Valley USD 18		Analysis Yea	r		Without Project		
Analysis Time Period		ak Hour							
Project ID Chino High School	Modernization								
East/West Street: Park Place	9			North/South S	Street: 10th Stre	et			
/olume Adjustments	and Site C	naracteris	tics	-					
Approach			Eastbound			We			
Movement	L		T R		L		T	R	
/olume (veh/h)	11		21	11	24		12	98	
%Thrus Left Lane	Northk		Le state le se ser al						
Approach Movement	L		lorthbound	R	L	Sou	Ithbound	R	
/olume (veh/h)			384	45	86		171	11	
%Thrus Left Lane									
		hound	14/	tbound		nbound	0	bound	
		bound	_	-	_	1		bound	
	L1	L2	L1	L2	L1	L2	L1	L2	
Configuration	LTR	—		TR	LTR		LTR		
PHF	0.95	—	0.95	0.95	0.95		0.95		
Flow Rate (veh/h)	44		25	115	462		281		
% Heavy Vehicles	0		0	0	0		0		
No. Lanes		1		2		1	1		
Geometry Group	4	а		5		2	2		
Duration, T				0	.25				
Saturation Headway	Adjustment	Workshe		-	-				
Prop. Left-Turns	0.3		1.0	0.0	0.0		0.3		
Prop. Right-Turns	0.3		0.0	0.9	0.1		0.0		
Prop. Heavy Vehicle	0.0		0.0	0.0	0.0		0.0		
nLT-adj	0.2	0.2	0.5	0.5	0.2	0.2	0.2	0.2	
nRT-adj	-0.6	-0.6	-0.7	-0.7	-0.6	-0.6	-0.6	-0.6	
nHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	
nadj, computed	-0.1		0.5	-0.6	-0.1		0.0		
Departure Headway a	and Service	Time							
nd, initial value (s)	3.20		3.20	3.20	3.20		3.20		
x, initial	0.04		0.02	0.10	0.41		0.25		
nd, final value (s)	6.05		6.91	5.77	4.78	1	5.09		
, final value	0.07	1	0.05	0.18	0.61		0.40		
Nove-up time, m (s)	-	.0		2.3		.0	2.	0	
Service Time, t _s (s)	4.0		4.6	3.5	2.8		3.1		
Capacity and Level o		I			1				
Sapacity and Level 0		h a cua d		Ale a cua d			0	la a const	
		bound		tbound	-	1bound		bound	
	L1	L2	L1	L2	L1	L2	L1	L2	
Capacity (veh/h)	294		275	365	712		531		
Delay (s/veh)	9.53		9.96	9.76	15.06		11.40		
.OS	AAA		A	Α	С		В		
Approach: Delay (s/veh)				80		.06	_	40	
LOS					_		11.40 B		
		Α		A C 12.90)	
ntersection Delay (s/veh)									
Intersection LOS					В				

General Information				Site Infor	mation			
				Intersection	nation	Park	Place/10th Street	
Analyst Agency/Co.	R Garl	and Valley USD		Jurisdiction			f Chino	
Date Performed	3/9/20			Analysis Yea	r		With Project	
Analysis Time Period		ak Hour						
Project ID Chino High School	Modernization							
East/West Street: Park Place	9			North/South S	Street: 10th Stre	et		
/olume Adjustments	and Site C	naracterist	tics					
Approach			Eastbound			We	stbound	
Movement			T				T	R
/olume (veh/h)	21		12	11	25		13	98
%Thrus Left Lane								
Approach Movement		<u> </u>	lorthbound T	R	L	Sou	thbound T	R
/olume (veh/h)			498	37	47		192	11
%Thrus Left Lane			,	0,				
		<u> </u>	<u> </u>		<u> </u>	<u> </u>		
		bound	_	stbound		ibound		bound
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LTR		L	TR	LTR		LTR	
PHF	0.95		0.95	0.95	0.95		0.95	
Flow Rate (veh/h)	45		26	116	573		262	
% Heavy Vehicles	0		0	0	0		0	
No. Lanes		1		2		1	1	
Geometry Group	4	а		5	_	2	2	2
Duration, T				0	.25			
Saturation Headway	Adjustment	Workshee	ət					
Prop. Left-Turns	0.5		1.0	0.0	0.0		0.2	
Prop. Right-Turns	0.2		0.0	0.9	0.1		0.0	
Prop. Heavy Vehicle	0.0		0.0	0.0	0.0		0.0	
nLT-adj	0.2	0.2	0.5	0.5	0.2	0.2	0.2	0.2
nRT-adj	-0.6	-0.6	-0.7	-0.7	-0.6	-0.6	-0.6	-0.6
nttradj nHV-adj	1.7	1.7	1.7	1.7	1.7	-0.0 1.7	1.7	1.7
	-	1.7	-		-	1.7	_	1.7
nadj, computed	-0.0	<u> </u>	0.5	-0.6	-0.0		0.0	
Departure Headway a		Time	1		1			
nd, initial value (s)	3.20	L	3.20	3.20	3.20		3.20	
κ, initial	0.04	L	0.02	0.10	0.51	ļ	0.23	
nd, final value (s)	6.39	ļ	7.17	6.03	4.82		5.26	ļ
κ, final value	0.08	Ļ	0.05	0.19	0.77		0.38	Ļ
Move-up time, m (s)		.0		2.3		.0	2.	0
Service Time, t _s (s)	4.4		4.9	3.7	2.8		3.3	
Capacity and Level o	f Service							
		bound	Wes	stbound	North	ibound	South	bound
	L1	L2	L1	L2	L1	L2	L1	L2
			_		_			
Capacity (veh/h)	295		276	366	737		512	
Delay (s/veh)	9.94		10.26	10.17	21.89		11.47	
.OS	A B			В	С		В	
Approach: Delay (s/veh)	9.94 10.			.19	21	.89	11.	47
LOS		A	1	В	(В		
ntersection Delay (s/veh)	1				7.07			

		O-WAY STOP	-						
General Informatior	ו		Site II	nformati	on				
Analyst	R Garland	4	Interse	ction		Park Plac	e/12th Str	reet	
Agency/Co.	Chino Va		Jurisdi	ction			City of Chino		
Date Performed	3/9/2018		Analys	is Year			2018 Existing Without		
Analysis Time Period	AM Peak	Hour				Project	Project		
Draiget Description Ch	ing High Sabaa	Modernization							
Project Description Ch East/West Street: Park		Nodernization	North/S	South Stree	t: 12th S	troot			
Intersection Orientation:				Period (hrs					
Vehicle Volumes an		nto	lotady i). 0.20				
Major Street		Eastbound				Westbou	nd		
Movement	1	2	3		4	5		6	
viovernent		<u>Z</u>	R			T T		R	
Volume (veh/h)		80	30		30	190			
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		1.00	
Hourly Flow Rate, HFR	0	84	31		31	200		0	
(veh/h)		64	31			200		0	
Percent Heavy Vehicles	0		0						
Median Type			Undivided						
RT Channelized			0					0	
_anes	0	1	0		1	1		0	
Configuration			TR		L	Т			
Jpstream Signal		0				0			
Minor Street		Northbound				Southbou	Ind		
Movement	7	8	9		10	11		12	
	L	Т	R		L	Т		R	
Volume (veh/h)	50		80						
Peak-Hour Factor, PHF	0.95	0.95	0.95		1.00	0.95	95 0.		
Hourly Flow Rate, HFR (veh/h)	52	0	84		0	0			
Percent Heavy Vehicles	0	0	0		0	0		0	
Percent Grade (%)		0	_			0			
Flared Approach		N				N			
Storage		0				0			
RT Channelized			0					0	
Lanes	0	0	0		0	0		0	
Configuration		LR							
Delay, Queue Length, a	nd Level of Se	rvice							
Approach	Eastbound	Westbound	1	Vorthbound	d	s	outhboun	d	
Movement	1	4	7	8	9	10	11	12	
Lane Configuration		L		LR	1			1	
v (veh/h)		31		136	1				
C (m) (veh/h)		1487		799	1			1	
v/c		0.02		0.17	<u> </u>				
		0.02		0.17	+				
95% queue length									
Control Delay (s/veh)		7.5	ļ	10.4	 				
LOS		A		В					
Approach Delay (s/veh)				10.4					
Approach LOS			В						

HCS+TM Version 5.6

Generated: 9/26/2018 3:41 PM

		O-WAY STOP							
General Information	n		Site I	nformat	ion				
Analyst	R Garlan	d	Interse	ection		Park Plac	e/12th St	reet	
Agency/Co.	Chino Va	lley USD	Jurisdi	ction		City of Cl	nino		
Date Performed	3/9/2018		Analys	Analysis Year			2018 Existing With Proje		
Analysis Time Period	AM Peak	Hour							
Project Description Ch	nino High Schoo	Modernization	•						
East/West Street: Park	Place		North/S	South Stre	eet: 12th S	Street			
ntersection Orientation:	East-West		Study F	Period (hr	s): 0.25				
Vehicle Volumes ar	nd Adjustme	ents							
Major Street		Eastbound			Westbound				
Movement	1	2	3		4	5		6	
	L	Т	R		L	Т		R	
/olume (veh/h)		83	30		29	42			
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		1.00	
Hourly Flow Rate, HFR veh/h)	0	87	31		30	44		0	
Percent Heavy Vehicles	0				0				
Vedian Type			Undivided						
RT Channelized			0					0	
anes	0	1	0		1	1		0	
Configuration			TR		L	Т			
Jpstream Signal		0				0			
Vinor Street		Northbound				Southbou	Ind		
Vovement	7	8	9		10	11		12	
	L	Т	R		L	Т		R	
Volume (veh/h)	30		78						
Peak-Hour Factor, PHF	0.95	0.95	0.95		1.00	0.95		0.95	
Hourly Flow Rate, HFR veh/h)	31	0	82		0	0		0	
Percent Heavy Vehicles	0	0	0		0	0		0	
Percent Grade (%)		0				0			
Flared Approach		N				N			
Storage		0				0			
RT Channelized			0					0	
Lanes	0	0	0		0	0		0	
Configuration	Ť	LR	† – – – – – – – – – – – – – – – – – – –		~	1 <u> </u>		~	
Delay, Queue Length, a	nd Level of Se		1	I			I		
Approach	Eastbound	Westbound	1	Northbour	nd	S	outhboun	d	
Vovement	1	4	7	8	9	10	11	12	
ane Configuration		 L	· ·	LR	<u>↓ </u>		<u> </u>		
/ (veh/h)		30		113		+		+	
C (m) (veh/h)		1483		899	+			+	
//c		0.02		0.13					
						-		+	
95% queue length		0.06		0.43		_			
Control Delay (s/veh)		7.5		9.6	_			_	
LOS		A		A					
Approach Delay (s/veh)				9.6					
Approach LOS				Α					

HCS+TM Version 5.6

Generated: 9/26/2018 3:42 PM

	Т	O-WAY STOP	CONTR		IMARY			
General Information	n		Site I	nformat	tion			
Analyst	R Garlan	d	Interse	ection		Park Plac	e/12th St	reet
Agency/Co.	Chino Va	lley USD	Jurisdi	ction		City of Cl	hino	
Date Performed	3/9/2018		Analysis Year			2024 Without Project		
Analysis Time Period	AM Peak	Hour						
Project Description Ch	nino High Schoo	Modernization						
East/West Street: Park	Place		North/S	South Stre	eet: 12th S	Street		
Intersection Orientation:	East-West		Study F	Period (hr	s): 0.25			
Vehicle Volumes ar	nd Adiustme	nts						
Major Street		Eastbound				Westbou	nd	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)		82	31		31	194		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		1.00
Hourly Flow Rate, HFR veh/h)	0	86	32		32	204		0
Percent Heavy Vehicles	0				0			
Vedian Type			Undivided			-		
RT Channelized	1		0					0
anes	0	1	0		1	1		0
Configuration			TR		L	Т		-
Upstream Signal		0				0		
Vinor Street		Northbound				Southbou	Ind	
Novement	7	8	9		10	11		12
	L	Т	R		L	T		R
Volume (veh/h)	51	· · ·	81			· ·		
Peak-Hour Factor, PHF	0.95	0.95	0.95		1.00	0.95		0.95
Hourly Flow Rate, HFR	53	0	85		0	0		0
veh/h)								
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
_anes	0	0	0		0	0		0
Configuration		LR						
Delay, Queue Length, a	and Level of Se	rvice	*				•	
Approach	Eastbound	Westbound	1	Northbour	nd	S	outhboun	d
Novement	1	4	7	8	9	10	11	12
ane Configuration		L		LR	1	1		
/ (veh/h)		32		138				
C (m) (veh/h)		1483		793	1			1
//c		0.02		0.17	1	1		1
95% queue length		0.07		0.63	1			+
		7.5		10.5				
Control Delay (s/veh)								+
		A		B	1			
Approach Delay (s/veh)				10.5				
Approach LOS				В				

HCS+TM Version 5.6

Generated: 9/26/2018 3:43 PM

		O-WAY STOP						
General Information	n		Site I	nformat	tion			
Analyst	R Garlan	d	Interse	ection		Park Plac	e/12th St	reet
Agency/Co.	Chino Va	lley USD	Jurisdi	ction		City of Cl	hino	
Date Performed	3/9/2018		Analys	is Year		2024 Wit	h Project	
Analysis Time Period	AM Peak	Hour						
Project Description Ch		Modernization						
East/West Street: Park					eet: 12th S	Street		
ntersection Orientation:	East-West		Study F	Period (hi	rs): 0.25			
Vehicle Volumes ar	nd Adjustme	ents						
Major Street		Eastbound				Westbou	nd	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)		85	31		30	46		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		1.00
Hourly Flow Rate, HFR veh/h)	0	89	32		31	48		0
Percent Heavy Vehicles	0				0			
Median Type				Undivid	ed			
RT Channelized			0					0
anes	0	1	0		1	1		0
Configuration			TR		L	Т		
Jpstream Signal		0				0		
Minor Street		Northbound				Southbou	und	
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
/olume (veh/h)	31		79					
Peak-Hour Factor, PHF	0.95	0.95	0.95		1.00	0.95		0.95
Hourly Flow Rate, HFR [veh/h]	32	0	83		0	0		0
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
_anes	0	0	0		0	0		0
Configuration		LR	1 <u> </u>		-	1 <u> </u>		-
Delay, Queue Length, a	Ind Level of Se		1	I		1	I	
Approach	Eastbound	Westbound	1	Northbou	nd	S	outhboun	d
Vovement	1	4	7	8	9	10	11	12
_ane Configuration	-	 L		LR			· · ·	+
/ (veh/h)		31		115	+			+
C (m) (veh/h)		1479		892	_			
,,, ,				-		-		
		0.02		0.13		_		+
95% queue length		0.06		0.44	_			
Control Delay (s/veh)		7.5		9.6				
LOS		A		A				
Approach Delay (s/veh)				9.6				
Approach LOS			A					

HCS+TM Version 5.6

Generated: 9/26/2018 3:44 PM

		O-WAY STOP	_						
General Informatior	ו		Site II	nformati	on				
Analyst	R Garland	4	Interse	ction		Park Plac	e/13th Str	reet	
Agency/Co.	Chino Va		Jurisdi	ction		City of Cl			
Date Performed	3/9/2018		Analys	is Year			2018 Existing Without		
Analysis Time Period	AM Peak	Hour				Project			
Project Description Ch	ing High Sabaa	Modernization							
East/West Street: Park		Nodernization	North/S	South Strop	-t. 12th C	Street			
Intersection Orientation:			North/South Street: 13th Street Study Period (hrs): 0.25						
Vehicle Volumes an		nto	lotady i). 0.20				
Major Street		Eastbound				Westbou	nd		
Movement	1	2	3		4	5		6	
Novement		<u>Z</u>	R			T		R	
Volume (veh/h)		100	10		20	460			
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		1.00	
Hourly Flow Rate, HFR	0	105	10		21	484		0	
(veh/h)			_						
Percent Heavy Vehicles	0				0				
Median Type				Undivide	d				
RT Channelized			0					0	
Lanes	0	1	0		1	1		0	
Configuration			TR		L	Т			
Upstream Signal		0				0			
Minor Street		Northbound			10	Southbou	ind I	10	
Movement	7	8	9		10	<u>11</u>		12	
	L	Т	R		L	Т		R	
Volume (veh/h) Peak-Hour Factor, PHF	40 0.95	0.95	20 0.95		1.00	0.05	0.95 0.		
Hourly Flow Rate, HFR								0.95	
(veh/h)	42	0	21		0	0		0	
Percent Heavy Vehicles	0	0	0		0	0		0	
Percent Grade (%)		0				0			
Flared Approach		N				N			
Storage		0				0			
RT Channelized			0					0	
Lanes	0	0	0		0	0		0	
Configuration		LR							
Delay, Queue Length, a	nd Level of Se	rvice				•	•		
Approach	Eastbound	Westbound		Northbound	d	l s	outhbound	d	
Movement	1	4	7	8	9	10	11	12	
Lane Configuration	-	L	· · ·	LR	Ť				
v (veh/h)		21		63	1	+		+	
C (m) (veh/h)		1487		535	+	+			
				-					
v/c		0.01		0.12					
95% queue length		0.04		0.40					
Control Delay (s/veh)		7.5		12.6	 			 	
LOS		A	В						
Approach Delay (s/veh)				12.6					
Approach LOS				В					

HCS+TM Version 5.6

Generated: 9/26/2018 3:45 PM

General Information Analyst Agency/Co. Date Performed Analysis Time Period Project Description Chir East/West Street: Park P Intersection Orientation: Vehicle Volumes and Major Street Movement Volume (veh/h) Peak-Hour Factor, PHF Hourly Flow Rate, HFR (veh/h) Percent Heavy Vehicles Median Type	R Garland Chino Val 3/9/2018 AM Peak no High Schoo Place East-West d Adjustme 1 1 L 0.95	Hey USD Hour Modernization I Modernization I I Modernization I Moderni	North/S Study F	ction sis Year South Stre	tion eet: 13th S s): 0.25	Park Place City of Ch 2018 Exis Street	ino	
Agency/Co. Date Performed Analysis Time Period Project Description <i>Chir</i> East/West Street: <i>Park P</i> Intersection Orientation: Vehicle Volumes and Major Street Movement Volume (veh/h) Peak-Hour Factor, PHF Hourly Flow Rate, HFR (veh/h) Percent Heavy Vehicles	Chino Val 3/9/2018 AM Peak no High Schoo Place East-West d Adjustme 1 L 0.95	Hey USD Hour Modernization I Modernization I I Modernization I Moderni	Jurisdi Analys North/S Study F	ction sis Year South Stre		City of Ch 2018 Exis	ino	
Agency/Co. Date Performed Analysis Time Period Project Description <i>Chir</i> East/West Street: <i>Park P</i> Intersection Orientation: Vehicle Volumes and Major Street Movement Volume (veh/h) Peak-Hour Factor, PHF Hourly Flow Rate, HFR (veh/h) Percent Heavy Vehicles	3/9/2018 AM Peak no High Schoo Place East-West d Adjustme 1 L 0.95	Hour Hour Modernization nts Eastbound 2 T 100	Analys Analys North/S Study F	sis Year South Stre		2018 Exis		Project
Date Performed Analysis Time Period Project Description <i>Chir</i> East/West Street: <i>Park P</i> Intersection Orientation: Vehicle Volumes and Major Street Movement Volume (veh/h) Peak-Hour Factor, PHF Hourly Flow Rate, HFR (veh/h) Percent Heavy Vehicles	3/9/2018 AM Peak no High Schoo Place East-West d Adjustme 1 L 0.95	Hour Hour Modernization nts Eastbound 2 T 100	North/S Study F	South Stre			ting With	Project
Project Description Chir East/West Street: Park P Intersection Orientation: Vehicle Volumes and Major Street Movement Volume (veh/h) Peak-Hour Factor, PHF Hourly Flow Rate, HFR (veh/h) Percent Heavy Vehicles	no High Schoo Place East-West d Adjustme 1 L 0.95	I Modernization Its Eastbound 2 T 100	Study F			Street		
East/West Street: Park P Intersection Orientation: Vehicle Volumes and Major Street Movement Volume (veh/h) Peak-Hour Factor, PHF Hourly Flow Rate, HFR (veh/h) Percent Heavy Vehicles	Place East-West d Adjustme 1 L 0.95	nts Eastbound 2 T 100	Study F			Street		
East/West Street: Park P Intersection Orientation: Vehicle Volumes and Major Street Movement Volume (veh/h) Peak-Hour Factor, PHF Hourly Flow Rate, HFR (veh/h) Percent Heavy Vehicles	Place East-West d Adjustme 1 L 0.95	nts Eastbound 2 T 100	Study F			Street		
Vehicle Volumes and Major Street Movement Volume (veh/h) Peak-Hour Factor, PHF Hourly Flow Rate, HFR (veh/h) Percent Heavy Vehicles	d Adjustme	Eastbound 2 T 100	3	Period (hr	rs): 0.25			
Major Street Movement Volume (veh/h) Peak-Hour Factor, PHF Hourly Flow Rate, HFR (veh/h) Percent Heavy Vehicles	1 L 0.95	Eastbound 2 T 100	_	I				
Major Street Movement Volume (veh/h) Peak-Hour Factor, PHF Hourly Flow Rate, HFR (veh/h) Percent Heavy Vehicles	1 L 0.95	Eastbound 2 T 100	_					
Movement Volume (veh/h) Peak-Hour Factor, PHF Hourly Flow Rate, HFR (veh/h) Percent Heavy Vehicles	L 0.95	2 T 100	_			Westbound		
Peak-Hour Factor, PHF Hourly Flow Rate, HFR (veh/h) Percent Heavy Vehicles	0.95	100	_		4	5		6
Peak-Hour Factor, PHF Hourly Flow Rate, HFR (veh/h) Percent Heavy Vehicles			R		L	Т		R
Hourly Flow Rate, HFR (veh/h) Percent Heavy Vehicles			10		16	293		
(veh/ĥ) Percent Heavy Vehicles	_	0.95	0.95		0.95	0.95		1.00
	0	105	10		16	308		0
Vedian Type	0				0			
				Undivid	ed			
RT Channelized			0					0
Lanes	0	1	0		1	1		0
Configuration			TR		L	Т		
Jpstream Signal		0				0		
Vinor Street	Ì	Northbound	•			Southbou	nd	
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h)	32		20			-		
Peak-Hour Factor, PHF	0.95	0.95	0.95		1.00	0.95		0.95
Hourly Flow Rate, HFR (veh/h)	33	0	21		0	0		0
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0	1			0		
RT Channelized		+ Ť	0			+ <u> </u>		0
Lanes	0	0	0		0	0	<u> </u>	0
Configuration				—	<u> </u>		—	<u> </u>
Delay, Queue Length, an	l d l aval of So		1	I				
Approach	Eastbound	Westbound	Ν	Northboui	nd	Q,	outhboun	d
Novement		4	7	8	9	10	11	u 12
	1		1		9			+
ane Configuration		L		LR				
/ (veh/h)		16		54		┥──┤		
C (m) (veh/h)		1487		671		┥──┤		_
//c		0.01		0.08				\square
95% queue length		0.03		0.26				
Control Delay (s/veh)		7.4		10.8				
LOS		A		В				
Approach Delay (s/veh)				10.8		1		
Approach LOS				B		+		

HCS+TM Version 5.6

Generated: 9/26/2018 3:46 PM

	TW	O-WAY STOP	CONTR	OL SUM	MARY			
General Informatio	n		Site I	nformati	ion			
Analyst	R Garlan	d	Interse	ection		Park Plac	ce/13th St	treet
Agency/Co.	Chino Va	lley USD	Jurisdi	ction		City of Cl	hino	
Date Performed	3/9/2018	•	Analys	is Year		2024 Wit		ect
Analysis Time Period	AM Peak	Hour						
Project Description Ch	nino High Schoo	Modernization	I			-		
East/West Street: Park			North/S	South Stre	et: 13th S	Street		
Intersection Orientation:	East-West		Study F	Period (hrs	s): 0.25			
Vehicle Volumes a	nd Adiustme	ents						
Major Street	,	Eastbound				Westbou	nd	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)		102	10		20	469		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		1.00
Hourly Flow Rate, HFR veh/h)	0	107	10		21	493		0
Percent Heavy Vehicles	0				0			
Median Type				Undivide	d	-		
RT Channelized			0					0
anes	0	1	0		1	1		0
Configuration			TR		L	T		
Jpstream Signal		0				0		
Minor Street		Northbound	•			Southbou	und	
Vovement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h)	41		20					
Peak-Hour Factor, PHF	0.95	0.95	0.95		1.00	0.95		0.95
Hourly Flow Rate, HFR veh/h)	43	0	21		0	0		0
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0			-	0		
Flared Approach	-	N				N		
Storage	-	0	+			0		
RT Channelized		Ť	0			<u> </u>		0
	0	0	0	<u> </u>	0	0		0
_anes Configuration					U			U
-								
Delay, Queue Length, a Approach	Eastbound	Westbound	•	Northboun	d		outhbour	nd .
Approach Novement				r	ii -		ii .	i i
	1	4	7	8	9	10	11	12
ane Configuration		L		LR				
/ (veh/h)		21		64				
C (m) (veh/h)		1484		527				
//c		0.01		0.12				
95% queue length		0.04		0.41				
Control Delay (s/veh)		7.5		12.8	1			
LOS		A		B	1			
Approach Delay (s/veh)				12.8	1		1	1
Approach LOS				В				

HCS+TM Version 5.6

Generated: 9/26/2018 3:47 PM

	TW	O-WAY STOP	CONTR		IMARY			
General Information	n		Site II	nformat	tion			
Analyst	R Garlan	d	Interse	ection		Park Plac	ce/13th St	reet
Agency/Co.	Chino Va	lley USD	Jurisdi	ction		City of Cl	hino	
Date Performed	3/9/2018	-	Analys	is Year		2024 Wit	h Project	
Analysis Time Period	AM Peak	Hour						
Project Description Ch	nino High Schoo	Modernization	I			-		
East/West Street: Park			North/S	South Stre	eet: 13th S	Street		
Intersection Orientation:	East-West		Study F	Period (hr	rs): 0.25			
Vehicle Volumes ar	nd Adiustme	ents						
Major Street		Eastbound		1		Westbou	nd	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)		102	10		16	302		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		1.00
Hourly Flow Rate, HFR veh/h)	0	107	10		16	317		0
Percent Heavy Vehicles	0				0			
Median Type			-	Undivid	ed	-	<u> </u>	
RT Channelized			0					0
anes	0	1	0		1	1		0
Configuration			TR		L	Т		
Jpstream Signal		0				0		
Minor Street		Northbound				Southbou	Ind	
Vovement	7	8	9		10	11		12
	L	Т	R		L	Т		R
/olume (veh/h)	33		20					
Peak-Hour Factor, PHF	0.95	0.95	0.95		1.00	0.95		0.95
Hourly Flow Rate, HFR veh/h)	34	0	21		0	0		0
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0			-	0		-
Flared Approach		N				N		
Storage		0	1			0		
RT Channelized			0					0
	0	0	0		0			
_anes Configuration					0	0		0
×			1					
Delay, Queue Length, a				ا میں ا	a d	<u> </u>	a	, d
Approach	Eastbound	Westbound		Northbou	1		outhbour	1
Movement	1	4	7	8	9	10	11	12
_ane Configuration		L		LR				
/ (veh/h)		16		55				
C (m) (veh/h)		1484		660				
//c		0.01		0.08				
95% queue length		0.03		0.27				
Control Delay (s/veh)		7.5		10.9				
LOS		A		<u>10.9</u> В		+		_
Approach Delay (s/veh)				10.9				
Approach LOS				В				

HCS+TM Version 5.6

Generated: 9/26/2018 3:47 PM

			CONTRO					
General Informatior	1		Site Ir	nformati	on			
Analyst	R Garlan	d	Interse			Park Plac		rance
Agency/Co.	Chino Va		Jurisdi	ction		City of Ch		
Date Performed	3/9/2018		Analys	is Year		2018 Exis	sting Withd	out
Analysis Time Period	AM Peak	Hour				Project		
Project Description Ch	ing High Saboa	Modernization						
East/West Street: Park		i Mouernization	North/S	outh Stree	et: Lot En	trance		
Intersection Orientation:				Period (hrs		liance		
Vehicle Volumes an		nte	10100.07). 0.20			
Major Street		Eastbound				Westbou	nd	
Movement	1	2	3		4	5		6
	Ĺ	<u>т</u>	R		L	T T		R
Volume (veh/h)	60	100				230		260
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	63	105	0		0	242		273
(veh/h)			-		-	_		
Percent Heavy Vehicles	0			ا ا ا ا ا	0			
Median Type				Undivide	a		1	
RT Channelized			0				0	
Lanes	1	1 T	0		0	1		0
Configuration	L	0				0		TR
Upstream Signal		-					<u> </u>	
Minor Street	7	Northbound	0		10	Southbou		10
Movement	7 L	8 T	9 R		10 L	<u>11</u> T		<u>12</u> R
Volume (veh/h)		1	К		L	I		ĸ
Peak-Hour Factor, PHF	0.95	0.95	0.95		1.00	0.95	0.95	
Hourly Flow Rate, HFR								0.95
(veh/h)	0	0	0		0	0		0
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		0	0		0
Configuration								
Delay, Queue Length, a	nd Level of Se	rvice						
Approach	Eastbound	Westbound	1	Vorthbound	d	s	outhboun	d
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L				1			
v (veh/h)	63				1			1
C (m) (veh/h)	1061				1	1		
//c	0.06				<u> </u>			
	0.00				+			+
95% queue length								
Control Delay (s/veh)	8.6				 			
LOS	A							
Approach Delay (s/veh)								
Approach LOS								

HCS+TM Version 5.6

Generated: 9/26/2018 3:49 PM

	IVV	O-WAY STOP	CONTROL	SUIVIIVIARI		
General Informatio	n		Site Infor	mation		
Analyst	R Garlan	d	Intersection	1	Park Place/L	ot Entrance
Agency/Co.	Chino Va	lley USD	Jurisdiction	1	City of Chind)
Date Performed	3/9/2018	-	Analysis Ye	ear	2018 Existin	g With Project
Analysis Time Period	AM Peak	Hour				
Project Description Ch	nino High Schoo	Modernization	•			
East/West Street: Park			North/South	Street: Lot Er	ntrance	
ntersection Orientation:	East-West		Study Perio	d (hrs): 0.25		
Vehicle Volumes a	nd Adiustme	ents				
Major Street	_	Eastbound			Westbound	
Vovement	1	2	3	4	5	6
	L	Т	R	L	Т	R
/olume (veh/h)	61	100			81	234
Peak-Hour Factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95
Hourly Flow Rate, HFR veh/h)	64	105	0	0	85	246
Percent Heavy Vehicles	0			0		
Vledian Type			Unc	divided	-	
RT Channelized			0			0
anes	1	1	0	0	1	0
Configuration	L	Т				TR
Jpstream Signal		0			0	
Minor Street		Northbound			Southbound	
Vovement	7	8	9	10	11	12
	L	Т	R		Т	R
/olume (veh/h)						
Peak-Hour Factor, PHF	0.95	0.95	0.95	1.00	0.95	0.95
Hourly Flow Rate, HFR veh/h)	0	0	0	0	0	0
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (%)		0			0	-
Flared Approach		N	1		N	
Storage	-	0			0	
RT Channelized			0		↓	0
	0		0	0		0
_anes	0	0	0	- U	0	0
Configuration		<u> </u>	1			
Delay, Queue Length, a			L1 (1			la la
Approach	Eastbound	Westbound		ibound		hbound
Novement	1	4	7	8 9	10	11 12
ane Configuration	L					
/ (veh/h)	64					
C (m) (veh/h)	1240					
//c	0.05					
95% queue length	0.16					
Control Delay (s/veh)	8.1					<u> </u>
	0.1 A				+ +	<u> </u>
Approach Delay (s/veh)						
Approach LOS						

HCS+TM Version 5.6

Generated: 9/26/2018 3:49 PM

	тм	O-WAY STOP	CONTRO	DL SUM	MARY			
General Informatio	n		Site In	nformati	ion			
Analyst	R Garlan	d	Interse	ction		Park Plac	e/Lot Enti	rance
Agency/Co.	Chino Va		Jurisdio			City of Cl		
Date Performed	3/9/2018	-	Analysi	is Year		2024 Wit	hout Proje	ct
Analysis Time Period	AM Peak	Hour						
Project Description Ch	nino High Schoo	ol Modernization						
East/West Street: Park	Place		North/S	outh Stree	et: Lot Er	ntrance		
Intersection Orientation:	East-West		Study P	Period (hrs	s): 0.25			
Vehicle Volumes a	nd Adiustme	ents						
Major Street	<u>/</u>	Eastbound				Westbou	nd	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
/olume (veh/h)	61	102				235		265
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR veh/h)	64	107	0		0	247		278
Percent Heavy Vehicles	0				0			
Vedian Type				Undivide	d			
RT Channelized			0					0
anes	1	1	0		0	1		0
Configuration	L	Т						TR
Jpstream Signal		0				0		
Minor Street		Northbound				Southbou	ind	
Vovement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h)								
Peak-Hour Factor, PHF	0.95	0.95	0.95		1.00	0.95		0.95
Hourly Flow Rate, HFR veh/h)	0	0	0		0	0	0 0	
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0	I	
-lared Approach		N	1			N		
Storage	1	0				0		
RT Channelized		Ť	0	<u> </u>		┤		0
Lanes	0	0	0		0	0		0
Configuration					0			<u> </u>
Delay, Queue Length, a	nd Loval of Sa		I			I		
	Eastbound	Westbound	Ν	lorthboun	4		outhboun	4
Approach			r					1
Novement	1	4	7	8	9	10	11	12
ane Configuration	L							
/ (veh/h)	64							
C (m) (veh/h)	1052					_		
//c	0.06							
95% queue length	0.19							
Control Delay (s/veh)	8.6							
_OS	A							
Approach Delay (s/veh)					1		I	1
Approach LOS								
NPPIDAULI LUG								

HCS+TM Version 5.6

Generated: 9/26/2018 3:50 PM

	ТМ	O-WAY STOP	CONTRO		IMARY			
General Informatio	n		Site In	nformat	ion			
Analyst	R Garlan	d	Interse	ction		Park Plac	e/Lot Ent	rance
Agency/Co.	Chino Va		Jurisdio			City of Cl		
Date Performed	3/9/2018	-	Analysi	is Year		2024 Wit	h Project	
Analysis Time Period	AM Peak	Hour						
Project Description Ch	nino High Schoo	ol Modernization						
East/West Street: Park	Place		North/S	outh Stre	eet: Lot Er	ntrance		
Intersection Orientation:	East-West		Study P	Period (hr	s): 0.25			
Vehicle Volumes a	nd Adiustme	ents						
Major Street	<u>/</u>	Eastbound				Westbou	nd	
Movement	1	2	3		4	5	1	6
	L	Т	R		L	Т		R
/olume (veh/h)	62	102				86		239
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
lourly Flow Rate, HFR veh/h)	65	107	0		0	90		251
Percent Heavy Vehicles	0				0			
Vedian Type				Undivide	ed			
RT Channelized			0					0
anes	1	1	0		0	1		0
Configuration	L	Т						TR
Jpstream Signal		0				0		
Minor Street		Northbound				Southbou	ind	
Vovement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h)								
Peak-Hour Factor, PHF	0.95	0.95	0.95		1.00	0.95		0.95
Hourly Flow Rate, HFR veh/h)	0	0	0		0	0	0 0	
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0	I	
-lared Approach		N	1			N		
Storage	1	0				0		
RT Channelized		Ť	0	- -		Ť		0
Lanes	0	0	0		0	0		0
Configuration					0			0
Delay, Queue Length, a	nd Loval of Sa		1					
Approach	Eastbound	Westbound	K	lorthbour	ad		outhboun	d
					n.			-
Novement	1	4	7	8	9	10	11	12
ane Configuration	L	ļ						
/ (veh/h)	65							
C (m) (veh/h)	1229							
//c	0.05							
95% queue length	0.17							
Control Delay (s/veh)	8.1				1			
	A							
Approach Delay (s/veh)					1			<u> </u>
• • • • •								
Approach LOS								

HCS+TM Version 5.6

Generated: 9/26/2018 3:51 PM

		D-WAY STOP						
General Information			Site In	formatio	on			
Analyst	R Garland		Intersec				e/Lot Exit	
Agency/Co.	Chino Valle	ev USD	Jurisdict	tion		City of Ch		
Date Performed	3/9/2018	,	Analysis	s Year		2018 Existing Without		
Analysis Time Period	AM Peak H	lour				Project		
Project Description Chi	ing Uigh School	Modernization						
East/West Street: Park F		wodernization	North/Sc	with Stroo	t: Lot Ex	i+		
ntersection Orientation:				eriod (hrs)		n.		
/ehicle Volumes an		to	otady i t		. 0.20			
Major Street	a Aujustinen	Eastbound				Westbou	nd	
Movement	1	2	3		4	5		6
novement		<u></u> Т	R			<u>т</u>		R
/olume (veh/h)		120			<u> </u>	440		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR					0			0
veh/h)	0	126	0			463		0
Percent Heavy Vehicles	0				0			
Median Type		-	1	Undivided	d			
RT Channelized			0					0
anes	0	1	0		0	1		0
Configuration		Т				Т		
Jpstream Signal		0				0		
Minor Street		Northbound	_			Southbou	Ind	
Novement	7	8	9		10	11		12
	L	Т	R		L	Т		R
/olume (veh/h)					80			40
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR veh/h)	0	0	0		84	0		42
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0	-			0		
- lared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
anes	0	0	0		1	0		1
Configuration					Ĺ			R
Delay, Queue Length, a	nd Level of Serv	vice		I				
Approach	Eastbound	Westbound	N	orthbound	1	S	outhbound	
Vovement	1	4	7	8	9	10	11	12
ane Configuration			'	0	3	L 10		R
						_		
(veh/h)						84		42
C (m) (veh/h)						474		603
//c						0.18		0.07
95% queue length						0.64		0.22
Control Delay (s/veh)						14.2		11.4
OS						В		В
Approach Delay (s/veh)			1		-		13.3	-
Approach LOS						1	В	
opyright © 2010 University of Flo		I		STM Vors				

HCS+TM Version 5.6

Generated: 9/26/2018 3:52 PM

		O-WAY STOP						
General Information	n		Site Ir	nforma	tion			
Analyst	R Garlan	d	Interse	ction		Park Plac	e/Lot Exi	t
Agency/Co.	Chino Va	lley USD	Jurisdie	ction		City of Cl	nino	
Date Performed	3/9/2018		Analys	is Year		2018 Exi	sting With	Project
Analysis Time Period	AM Peak	Hour						
Project Description Ch		ol Modernization						
East/West Street: Park					eet: Lot E	kit		
ntersection Orientation:	East-West		Study F	Period (h	rs): 0.25			
Vehicle Volumes ar	nd Adjustme	ents						
Major Street		Eastbound				Westbou	nd	
Novement	1	2	3		4	5		6
	L	Т	R		L	Т		R
/olume (veh/h)		120				282		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
lourly Flow Rate, HFR veh/h)	0	126	0		0	296		0
Percent Heavy Vehicles	0				0			
vledian Type				Undivid	led			
RT Channelized			0					0
anes	0	1	0		0	1		0
Configuration		Т				Т		
Jpstream Signal		0				0		
Minor Street		Northbound				Southbou	Ind	
Novement	7	8	9		10	11		12
	L	Т	R		L	Т		R
/olume (veh/h)					50			27
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR veh/h)	0	0	0		52	0		28
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
-lared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
_anes	0	0	0		1	0		1
Configuration			<u> </u>		L			R
Delay, Queue Length, a	and Level of Se	rvice		I			L. L	
Approach	Eastbound	Westbound	Ν	lorthbou	Ind		outhbour	nd
Novement	1	4	7	8	9	10	11	12
ane Configuration	1	· · ·	·	0				R
						_		_
v (veh/h)						52		28
C (m) (veh/h)					_	592		748
/c					_	0.09		0.04
95% queue length						0.29		0.12
Control Delay (s/veh)						11.7		10.0
OS						В		Α
Approach Delay (s/veh)							11.1	
Approach LOS						1	В	
Copyright © 2010 University of Fl		· · ·		ICS+TM V		-	rated: 9/26/	

HCS+TM Version 5.6

Generated: 9/26/2018 3:53 PM

		O-WAY STOP							
General Informatio	n		Site Ir	nform	atio	n			
Analyst	R Garlan	d	Interse	ction			Park Plac	e/Lot Exi	!
Agency/Co.	Chino Va	lley USD	Jurisdi	ction			City of Cl	nino	
Date Performed	3/9/2018		Analys	is Year	-		2024 Wit	hout Proje	ect
Analysis Time Period	AM Peak	Hour							
Project Description Cl		ol Modernization							
East/West Street: Park			North/S	South S	treet	: Lot Exi	t		
Intersection Orientation:	East-West		Study F	Period ((hrs):	0.25			
Vehicle Volumes ar	nd Adjustme	ents							
Major Street		Eastbound					Westbou	nd	
Movement	1	2	3			4	5		6
	L	Т	R			L	Т		R
Volume (veh/h)		122					449		
Peak-Hour Factor, PHF	0.95	0.95	0.95		(0.95	0.95		0.95
Hourly Flow Rate, HFR (veh/h)	0	128	0			0	472		0
Percent Heavy Vehicles	0					0			
Median Type				Undiv	ided				
RT Channelized			0						0
Lanes	0	1	0			0	1		0
Configuration		Т					Т		
Upstream Signal		0					0		
Minor Street		Northbound					Southbou	Ind	
Movement	7	8	9			10	11		12
	L	Т	R			L	Т		R
Volume (veh/h)						82			41
Peak-Hour Factor, PHF	0.95	0.95	0.95		(0.95	0.95		0.95
Hourly Flow Rate, HFR (veh/h)	0	0	0			86	0		43
Percent Heavy Vehicles	0	0	0			0	0		0
Percent Grade (%)		0					0		
Flared Approach		N					N		
Storage		0					0		
RT Channelized			0				-		0
Lanes	0	0	0			1	0		1
Configuration			Ť			L			R
Delay, Queue Length, a	and Level of Se		1			_			
Approach	Eastbound	Westbound	N	lorthbo	und			outhboun	d
Movement	1	4	7	8		9	10	11	12
Lane Configuration	1		'	0	-+	3	L		R
					-+				-
/ (veh/h)					-+		86		43
C (m) (veh/h)							467		596
v/c							0.18		0.07
95% queue length							0.67		0.23
Control Delay (s/veh)							14.4		11.5
LOS							В		В
Approach Delay (s/veh)							1	13.5	
Approach LOS							1	B	
							1		

HCS+TM Version 5.6

Generated: 9/26/2018 3:54 PM

		O-WAY STOP							
General Informatio	n		Site Ir	nforma	ation				
Analyst	R Garlan	and Intersection Park Place					ce/Lot Exit		
Agency/Co.	Chino Va	lley USD	Jurisdi	ction		City of Cl	City of Chino		
Date Performed	3/9/2018		Analys	is Year		2024 Wit	h Project		
Analysis Time Period	AM Peak	Hour							
Project Description Cl		ol Modernization							
East/West Street: Park			North/S	South St	reet: Lot E	xit			
Intersection Orientation:	East-West		Study F	Period (h	nrs): 0.25				
Vehicle Volumes a	nd Adjustme	ents							
Major Street		Eastbound				Westbou	Westbound		
Movement	1	2	3		4	5		6	
	L	Т	R		L	Т		R	
/olume (veh/h)		122				291			
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95	
Hourly Flow Rate, HFR veh/h)	0	128	0		0	306		0	
Percent Heavy Vehicles	0				0				
Vedian Type				Undivid	ded				
RT Channelized			0					0	
Lanes	0	1	0		0	1		0	
Configuration		Т				Т			
Jpstream Signal		0				0			
Minor Street		Northbound				Southbou	Southbound		
Movement	7	8	9		10	11		12	
	L	Т	R		L	Т		R	
Volume (veh/h)					52			28	
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95	
Hourly Flow Rate, HFR (veh/h)	0	0	0		54	0		29	
Percent Heavy Vehicles	0	0	0		0	0		0	
Percent Grade (%)		0	•			0			
Flared Approach		N				N			
Storage		0	1			0			
RT Channelized			0					0	
Lanes	0	0	0		1	0		1	
Configuration	<u> </u>		Ť		L	Ť		R	
Delay, Queue Length, a	and Level of Se	arvice		I		1	I		
Approach	Eastbound	Westbound	N	lorthbou	Ind		outhbound	4	
Vovement	1	4	7	8	9	10	11	12	
ane Configuration	, i		,	0		L 10		R	
/ (veh/h)						54		29	
C (m) (veh/h)						583		739	
//c						0.09		0.04	
95% queue length						0.30		0.12	
Control Delay (s/veh)						11.8		10.1	
OS						В		В	
Approach Delay (s/veh)					•		11.2		
Approach LOS							B		
	l Iorida. All Rights Res						erated: 9/26/2		

HCS+TM Version 5.6

Generated: 9/26/2018 3:55 PM

		O-WAY STOP									
General Information	า		Site In	formatio	on						
Analyst R Garland			Intersec	ction		Washington Ave/10th Street					
Agency/Co.	Chino Val		Jurisdic	tion		City of Chino					
Date Performed	3/9/2018		Analysi	s Year		2018 Existing Without					
Analysis Time Period	AM Peak	Hour				Project					
Project Description Ch	ino High School	Modernization									
East/West Street: Wash		Modernization	North/Sc	outh Stree	t 10th S	treet					
Intersection Orientation:			North/South Street: 10th Street Study Period (hrs): 0.25								
Vehicle Volumes ar		nte	[- ····] ·		,						
Major Street		Northbound				Southbou	ind				
Movement	1	2	3		4	5		6			
	L	T	R		L	T T		R			
Volume (veh/h)	80	440				210		10			
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95			
Hourly Flow Rate, HFR	84	463	0		0	221		10			
(veh/h)			-								
Percent Heavy Vehicles	0				0						
Median Type			1	Undivided	7						
RT Channelized			0					0			
Lanes	0	1	0		0	1		0			
Configuration	LT	0				0	TR				
Upstream Signal		0				÷	÷				
Minor Street		Eastbound			40		Westbound				
Movement	7	8	9		10	<u>11</u>		12			
	L 10	Т	R		L	Т		R			
Volume (veh/h) Peak-Hour Factor, PHF	10 0.95	0.95	30 0.95		0.95	0.95		0.95			
Hourly Flow Rate, HFR											
(veh/h)	10	0	31		0	0		0			
Percent Heavy Vehicles	0	0	0		0	0		0			
Percent Grade (%)		0	•			0	•				
Flared Approach		N				N					
Storage		0				0					
RT Channelized			0					0			
Lanes	0	0	0		0	0		0			
Configuration		LR	-		-			-			
Delay, Queue Length, a	nd Level of Se										
Approach	Northbound	Southbound	V	Vestbound		T E	Eastbound				
Movement	1	4	7	8	9	10	11	12			
Lane Configuration	LT		· · ·	<u> </u>	Ť		LR	- '2			
v (veh/h)	84						41				
, ,	04 1349						584				
C (m) (veh/h)											
v/c	0.06						0.07				
95% queue length	0.20						0.23	<u> </u>			
Control Delay (s/veh)	7.8					_	11.6				
LOS	A						В				
Approach Delay (s/veh)							11.6				
Approach LOS							В				
Convright © 2010 Iniversity of El							vratad: 0/26/20				

HCS+TM Version 5.6

Generated: 9/26/2018 3:56 PM

		O-WAY STOP	001111							
General Information	n		Site Ir	nform	atic	on				
Analyst R Garland			Intersection				Washington Ave/10th Street			
Agency/Co.	Chino Va		Jurisdi	ction				City of Chino		
Date Performed	3/9/2018		Analys	is Year	-		2018 Exis	ting Plus I	Project	
Analysis Time Period	AM Peak	Hour								
Project Description Ch		l Modernization								
East/West Street: Wash						t: 10th Sti	reet			
ntersection Orientation:	North-South		Study F	Period ((hrs)	: 0.25				
Vehicle Volumes ar	nd Adjustme	nts								
Major Street		Northbound					Southbound			
Movement	1	2	3			4	5		6	
	L	Т	R			L	Т		R	
/olume (veh/h)	20	553	11			6	211		12	
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95	
lourly Flow Rate, HFR veh/h)	21	582	11			6	222		12	
Percent Heavy Vehicles	0					0				
/ledian Type				Undiv	ridea	1				
RT Channelized			0						0	
anes	0	1	0			0	1		0	
Configuration	LTR					LTR				
Jpstream Signal		0					0			
/linor Street		Eastbound					Westbound			
Novement	7	8	9			10	11		12	
	L	Т	R			L	Т		R	
/olume (veh/h)	11	1	11			0	0		0	
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95	
lourly Flow Rate, HFR veh/h)	11	1	11			0	0		0	
Percent Heavy Vehicles	0	0	0			0	0		0	
Percent Grade (%)		0					0			
- lared Approach		N					N	1		
Storage		0					0			
RT Channelized			0						0	
anes	0	1	0			0	1		0	
Configuration		LTR					LTR			
Delay, Queue Length, a	Ind Level of Se	rvice	-				-	-		
Approach	Northbound	Southbound	١	Nestbo	ound		E	Eastbound		
/lovement	1	4	7	8		9	10	11	12	
ane Configuration	LTR	LTR		LTR	2			LTR	1	
(veh/h)	21	6		0				23		
(vei,,,,) C (m) (veh/h)	1345	993		L J				396	1	
//c	0.02	0.01				ļ	<u> </u>	0.06	1	
	0.02								<u> </u>	
95% queue length		0.02						0.18		
Control Delay (s/veh)	7.7	8.6						14.7	──	
OS	A	A						В		
Approach Delay (s/veh)							L	14.7		
Approach LOS								В		

HCS+TM Version 5.6

Generated: 9/26/2018 3:59 PM

	TW	O-WAY STOP	CONTRO	DL SU	MMARY					
General Information	n		Site Ir	nforma	ation					
Analyst	Interse	ction		Washingt	Washington Ave/10th Street					
Agency/Co.	Chino Va	lley USD	Jurisdio	ction		City of Ch				
Date Performed	3/9/2018		Analysi	is Year		2024 Without Project				
Analysis Time Period	AM Peak	Hour								
Project Description Ch		l Modernization								
East/West Street: Was/			North/S	outh St	reet: 10th S	Street				
Intersection Orientation:	North-South		Study F	Period (h	nrs): <i>0.25</i>					
Vehicle Volumes ar	nd Adjustme	nts								
Major Street		Northbound				Southbou	Southbound			
Movement	1	2	3 4		5		6			
	L	Т	R		L	Т		R		
Volume (veh/h)	90	497				225		10		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95		
Hourly Flow Rate, HFR veh/h)	94	523	0		0	236		10		
Percent Heavy Vehicles	0				0					
Vedian Type				Undivi	ded					
RT Channelized			0					0		
_anes	0	1	0		0	1		0		
Configuration	LT							TR		
Upstream Signal		0				0				
Vinor Street		Eastbound				Westbou	Westbound			
Vovement	7	8	9		10	11	11 1			
	L	Т	R		L	Т		R		
/olume (veh/h)	10		31							
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95		
Hourly Flow Rate, HFR veh/h)	10	0	32		0	0		0		
Percent Heavy Vehicles	0	0	0		0	0		0		
Percent Grade (%)		0				0				
Flared Approach		N				N				
Storage		0				0				
RT Channelized			0					0		
Lanes	0	0	0		0	0		0		
Configuration	0				U			0		
Delay, Queue Length, a				Noothou	Ind	,	Toothound			
Approach Movement	Northbound 1	Southbound 4	7	Vestbou 8	und 9	10	Eastbound	12		
	LT	4	1	0	9	10				
ane Configuration							LR 42			
/ (veh/h)	94				_		42			
C (m) (veh/h)	1332						546	 		
//c	0.07					_	0.08			
95% queue length	0.23						0.25			
Control Delay (s/veh)	7.9						12.1			
LOS	A						В			
Approach Delay (s/veh)							12.1	•		
Approach LOS						1	B			
	orida All Rights Res	1		C MIL		I	D erated: 9/26/2			

HCS+TM Version 5.6

Generated: 9/26/2018 3:57 PM

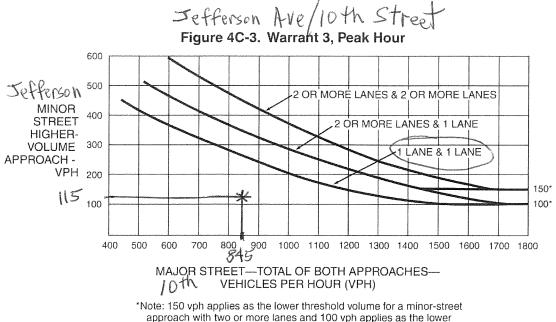
		O-WAY STOP	001111							
General Information	n		Site Ir	nforma	atio	n				
Analyst R Garland			Intersection				Washington Ave/10th Street			
Agency/Co.	Chino Va		Jurisdi	ction			City of Ch			
Date Performed	3/9/2018		Analys	Analysis Year			2024 With Project			
Analysis Time Period	AM Peak	Hour								
Project Description Ch	nino High Schoo	l Modernization								
East/West Street: Wash			North/S	South St	treet:	10th Str	eet			
ntersection Orientation:	North-South		Study F	Period (I	hrs):	0.25				
/ehicle Volumes ar	nd Adjustme	nts								
Major Street		Northbound					Southbound			
Novement	1	2	3			4	5		6	
	L	Т	R			L	Т		R	
/olume (veh/h)	30	610	11			6	226		12	
Peak-Hour Factor, PHF	0.95	0.95	0.95		().95	0.95		0.95	
lourly Flow Rate, HFR veh/h)	31	642	11			6	237		12	
Percent Heavy Vehicles	0					0				
/ledian Type				Undivi	ided					
RT Channelized			0						0	
anes	0	1	0			0	1		0	
Configuration	LTR				L	TR				
Jpstream Signal		0					0			
linor Street		Eastbound					Westbound			
lovement	7	8	9			10	11		12	
	L	Т	R			L	Т		R	
/olume (veh/h)	11	1	12			0	0		0	
Peak-Hour Factor, PHF	0.95	0.95	0.95		().95	0.95		0.95	
lourly Flow Rate, HFR veh/h)	11	1	12			0	0		0	
Percent Heavy Vehicles	0	0	0			0	0		0	
Percent Grade (%)		0					0			
lared Approach		N					N			
Storage		0					0			
RT Channelized			0						0	
anes	0	1	0			0	1		0	
Configuration		LTR					LTR			
Delay, Queue Length, a	and Level of Se									
Approach	Northbound	Southbound	l l	Nestbo	und		F	Eastbound		
Novement	1	4	7	8		9	10	11	12	
ane Configuration	LTR	LTR		LTR				LTR	+	
r (veh/h)	31	6		0				24		
(ven/n) C (m) (veh/h)	1328	943						356		
()())	0.02	943 0.01			-+			0.07		
//C										
5% queue length	0.07	0.02			-+			0.22		
Control Delay (s/veh)	7.8	8.8						15.8		
.OS	A	A						С		
pproach Delay (s/veh)								15.8		
Approach LOS								С		

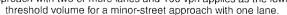
HCS+TM Version 5.6

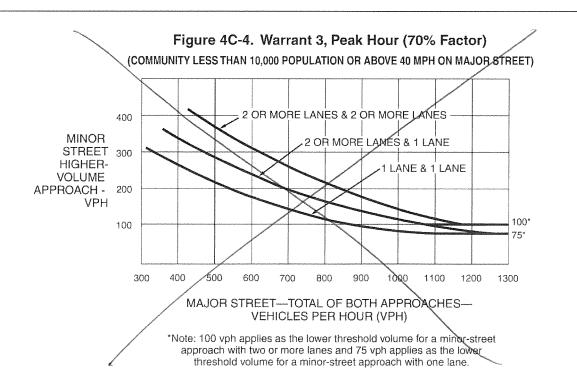
Generated: 9/26/2018 4:00 PM

Attachments

Attachment C. Traffic Signal Warrant Analysis Worksheets

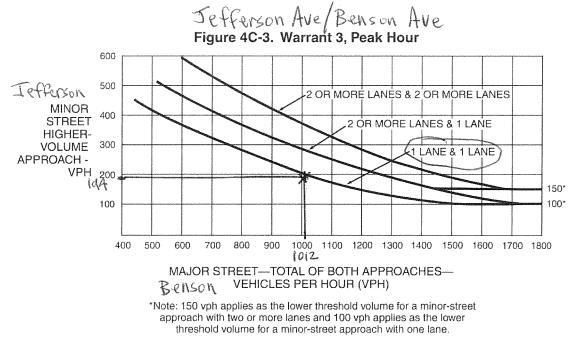

Attachments

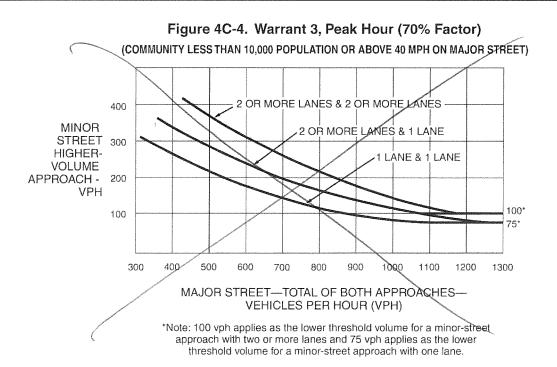

This page intentionally left blank.


TRAFFIC SIGNAL WARRANT ANALYSIS WORKSHEETS

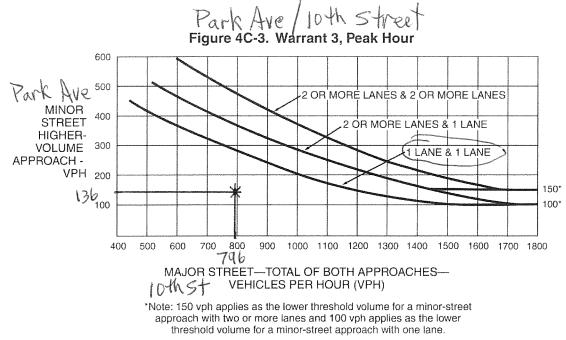
California MUTCD 2014 Edition

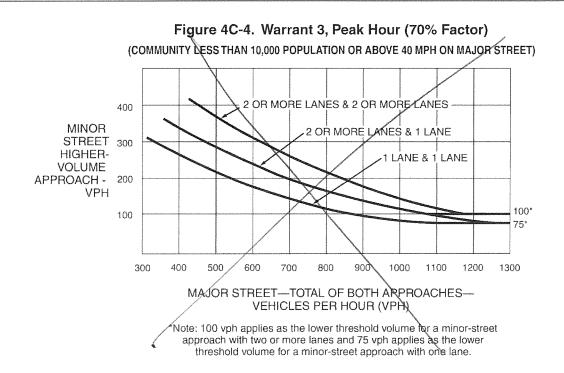
(FHWA's MUTCD 2009 Edition, including Revisions 1 & 2, as amended for use in California)





California MUTCD 2014 Edition


(FHWA's MUTCD 2009 Edition, including Revisions 1 & 2, as amended for use in California)



California MUTCD 2014 Edition

(FHWA's MUTCD 2009 Edition, including Revisions 1 & 2, as amended for use in California)

